Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-4 of 4
Giovanni Petri
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2021) 5 (2): 549–568.
Published: 09 June 2021
FIGURES
| View All (6)
Abstract
View articletitled, Simplicial and topological descriptions of human brain
dynamics
View
PDF
for article titled, Simplicial and topological descriptions of human brain
dynamics
While brain imaging tools like functional magnetic resonance imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data’s apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain’s functional connectivity, that is, the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data’s topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, wefind that those that track topological features optimally distinguish experimentally defined brain states. Author Summary Time-varying functional connectivity interprets brain function as time-varying patterns of coordinated brain activity. While many questions remain regarding how brain function emerges from multiregional interactions, advances in the mathematics of topological data analysis (TDA) may provide new insights. One tool from TDA, “persistent homology,” observes the occurrence and persistence of n -dimensional holes in a sequence of simplicial complexes extracted from a weighted graph. In the present study, we compare the use of persistent homology versus more traditional metrics at the task of segmenting brain states that differ across experimental conditions. We find that the structures identified by persistent homology more accurately segment the stimuli, more accurately segment high versus low performance levels under common stimuli, and generalize better across volunteers.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (3): 763–778.
Published: 01 July 2019
FIGURES
| View All (6)
Abstract
View articletitled, Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis
View
PDF
for article titled, Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis
In this article, we present an open source neuroinformatics platform for exploring, analyzing, and validating distilled graphical representations of high-dimensional neuroimaging data extracted using topological data analysis (TDA). TDA techniques like Mapper have been recently applied to examine the brain’s dynamical organization during ongoing cognition without averaging data in space, in time, or across participants at the outset. Such TDA-based approaches mark an important deviation from standard neuroimaging analyses by distilling complex high-dimensional neuroimaging data into simple—yet neurophysiologically valid and behaviorally relevant—representations that can be interactively explored at the single-participant level. To facilitate wider use of such techniques within neuroimaging and general neuroscience communities, our work provides several tools for visualizing, interacting with, and grounding TDA-generated graphical representations in neurophysiology. Through Python-based Jupyter notebooks and open datasets, we provide a platform to assess and visualize different intermittent stages of Mapper and examine the influence of Mapper parameters on the generated representations. We hope this platform could enable researchers and clinicians alike to explore topological representations of neuroimaging data and generate biological insights underlying complex mental disorders. Author Summary To develop biologically grounded psychiatric diagnosis, researchers and clinicians need tools for distilling complex high-dimensional neuroimaging data into simple yet interactive and clinically relevant representations. Further, for translational outcomes, these representations should be conceivable at the single-participant level. Topological data analysis techniques such as Mapper allow generation of these representations. Here, we introduce a set of tools that can facilitate wider acceptance of Mapper within the neuroscience community and provide a series of easy-to-follow steps for visualizing Mapper-generated graphical representations. We provide detailed examples to reveal the “under-the-hood” workings of Mapper.
Includes: Multimedia, Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (3): 653–655.
Published: 01 July 2019
Abstract
View articletitled, Editorial: Topological Neuroscience
View
PDF
for article titled, Editorial: Topological Neuroscience
Topology, in its many forms, describes relations. It has thus long been a central concept in neuroscience, capturing structural and functional aspects of the organization of the nervous system and their links to cognition. Recent advances in computational topology have extended the breadth and depth of topological descriptions. This Focus Feature offers a unified overview of the emerging field of topological neuroscience and of its applications across the many scales of the nervous system from macro-, over meso-, to microscales.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (3): 744–762.
Published: 01 July 2019
FIGURES
| View All (10)
Abstract
View articletitled, Topological gene expression networks recapitulate brain anatomy and function
View
PDF
for article titled, Topological gene expression networks recapitulate brain anatomy and function
Author Summary In this paper, we described a gene co-expression analysis pipeline that produces networks that we show to be closely related to either brain function and to neurotransmitter pathways. Our results suggest that this pipeline could be developed into a platform enabling the exploration of the effects of physiological and pathological alterations to specific gene sets, including profiling drugs effects. Abstract Understanding how gene expression translates to and affects human behavior is one of the ultimate goals of neuroscience. In this paper, we present a pipeline based on Mapper, a topological simplification tool, to analyze gene co-expression data. We first validate the method by reproducing key results from the literature on the Allen Human Brain Atlas and the correlations between resting-state fMRI and gene co-expression maps. We then analyze a dopamine-related gene set and find that co-expression networks produced by Mapper return a structure that matches the well-known anatomy of the dopaminergic pathway. Our results suggest that network based descriptions can be a powerful tool to explore the relationships between genetic pathways and their association with brain function and its perturbation due to illness and/or pharmacological challenges.
Includes: Supplementary data