Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Guadalupe Soria
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (2): 397–415.
Published: 01 April 2020
FIGURES
| View All (5)
Abstract
View article
PDF
Author Summary We have applied magnetic resonance image–based connectomics to characterize TgF344-AD rats, a transgenic model of Alzheimer’s disease (AD). This represents a highly translational approach, what is essential to investigate potential treatments. TgF344-AD animals were evaluated from early to advanced ages to describe alterations in brain connectivity and how brain networks are affected by age. Results showed that aging had a bigger impact in the structural connectivity of the TgF344-AD than in control animals, and that changes in the structural network, already observed at early ages, significantly influenced cognitive outcome of transgenic animals. Alterations in connectivity were similar to that described in AD human studies and complement them by providing insights into earlier stages and a plot of AD effects throughout the whole life span. Abstract The research of Alzheimer’s disease (AD) in its early stages and its progression till symptomatic onset is essential to understand the pathology and investigate new treatments. Animal models provide a helpful approach to this research, since they allow for controlled follow-up during the disease evolution. In this work, transgenic TgF344-AD rats were longitudinally evaluated starting at 6 months of age. Every 3 months, cognitive abilities were assessed by a memory-related task and magnetic resonance imaging (MRI) was acquired. Structural and functional brain networks were estimated and characterized by graph metrics to identify differences between the groups in connectivity, its evolution with age, and its influence on cognition. Structural networks of transgenic animals were altered since the earliest stage. Likewise, aging significantly affected network metrics in TgF344-AD, but not in the control group. In addition, while the structural brain network influenced cognitive outcome in transgenic animals, functional network impacted how control subjects performed. TgF344-AD brain network alterations were present from very early stages, difficult to identify in clinical research. Likewise, the characterization of aging in these animals, involving structural network reorganization and its effects on cognition, opens a window to evaluate new treatments for the disease.
Includes: Supplementary data