Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Hilde M. Geurts
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (2): 445–466.
Published: 01 June 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Author Summary The article introduces a method to combine common practices in network psychometrics and network neuroimaging. Namely, we use the unique variance in behavioural measures as regressors to identify unique neural correlates. This enables the description of brain-level and behavioural-level data into a joint network while keeping the dimensionality of the results manageable and interpretable. We illustrate this approach by showing the network of autistic traits and their correlates in resting-state functional connectivity. Abstract Network approaches that investigate the interaction between symptoms and behaviours have opened new ways of understanding psychological phenomena in health and disorder in recent years. In parallel, network approaches that characterise the interaction between brain regions have become the dominant approach in neuroimaging research. In this paper, we introduce a methodology for combining network psychometrics and network neuroscience. This approach utilises the information from the psychometric network to obtain neural correlates that are associated with each node in the psychometric network (network-based regression). Moreover, we combine the behavioural variables and their neural correlates in a joint network to characterise their interactions. We illustrate the approach by highlighting the interaction between the triad of autistic traits and their resting-state functional connectivity associations. To this end, we utilise data from 172 male autistic participants (10–21 years) from the autism brain data exchange (ABIDE, ABIDE-II) that completed resting-state fMRI and were assessed using the autism diagnostic interview (ADI-R). Our results indicate that the network-based regression approach can uncover both unique and shared neural correlates of behavioural measures. For instance, our example analysis indicates that the overlap between communication and social difficulties is not reflected in the overlap between their functional brain correlates.