Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Jennifer E. Phillips-Cremins
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (3): 656–673.
Published: 01 July 2019
FIGURES
| View All (5)
Abstract
View article
PDF
Data analysis techniques from network science have fundamentally improved our understanding of neural systems and the complex behaviors that they support. Yet the restriction of network techniques to the study of pairwise interactions prevents us from taking into account intrinsic topological features such as cavities that may be crucial for system function. To detect and quantify these topological features, we must turn to algebro-topological methods that encode data as a simplicial complex built from sets of interacting nodes called simplices. We then use the relations between simplices to expose cavities within the complex, thereby summarizing its topological features. Here we provide an introduction to persistent homology, a fundamental method from applied topology that builds a global descriptor of system structure by chronicling the evolution of cavities as we move through a combinatorial object such as a weighted network. We detail the mathematics and perform demonstrative calculations on the mouse structural connectome, synapses in C. elegans , and genomic interaction data. Finally, we suggest avenues for future work and highlight new advances in mathematics ready for use in neural systems. Author Summary For the network neuroscientist, this exposition aims to communicate both the mathematics and the advantages of using tools from applied topology for the study of neural systems. Using data from the mouse connectome, electrical and chemical synapses in C. elegans , and chromatin interaction data, we offer example computations and applications to further demonstrate the power of topological data analysis in neuroscience. Finally, we expose the reader to novel developments in applied topology and relate these developments to current questions and methodological difficulties in network neuroscience.