Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Jessica R. Cohen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (3): 864–905.
Published: 01 October 2023
FIGURES
| View All (7)
Abstract
View article
PDF
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)–endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2021) 5 (1): 145–165.
Published: 01 February 2021
FIGURES
| View All (5)
Abstract
View article
PDF
Author Summary Correlated patterns of brain activity measured in the absence of any prescribed task show meaningful temporal fluctuations. However, the manner by which such fluctuations track aspects of human behavior remains unresolved. The current report takes a data-driven approach to characterize how time-varying patterns of human brain functional connectivity differ from traditional static measures in their ability to track aspects of personality and cognitive ability. We determine that time-varying patterns of functional connectivity not only track similar aspects of behavior as do static measures, but also unique behavioral qualities as well, specifically those that reflect behavioral variability. These results highlight the importance and relevance of examining time-varying measures of functional connectivity. Abstract Measures of human brain functional connectivity acquired during the resting-state track critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity patterns—typically averaged across in traditional analyses—have been considered for their potential neuroscientific relevance. There exists a lack of research on the differences between traditional “static” measures of functional connectivity and newly considered “time-varying” measures as they relate to human behavior. Using functional magnetic resonance imagining (fMRI) data collected at rest, and a battery of behavioral measures collected outside the scanner, we determined the degree to which each modality captures aspects of personality and cognitive ability. Measures of time-varying functional connectivity were derived by fitting a hidden Markov model. To determine behavioral relationships, static and time-varying connectivity measures were submitted separately to canonical correlation analysis. A single relationship between static functional connectivity and behavior existed, defined by measures of personality and stable behavioral features. However, two relationships were found when using time-varying measures. The first relationship was similar to the static case. The second relationship was unique, defined by measures reflecting trialwise behavioral variability. Our findings suggest that time-varying measures of functional connectivity are capable of capturing unique aspects of behavior to which static measures are insensitive.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (1): 70–88.
Published: 01 February 2020
FIGURES
| View All (5)
Abstract
View article
PDF
Whole-brain network analysis is commonly used to investigate the topology of the brain using a variety of neuroimaging modalities. This approach is notable for its applicability to a large number of domains, such as understanding how brain network organization relates to cognition and behavior and examining disrupted brain network organization in disease. A benefit to this approach is the ability to summarize overall brain network organization with a single metric (e.g., global efficiency). However, important local differences in network structure might exist without any corresponding observable differences in global topology, making a whole-brain analysis strategy unlikely to detect relevant local findings. Conversely, using local network metrics can identify local differences, but are not directly informative of differences in global topology. Here, we propose the network statistic (NS) jackknife framework , a simulated lesioning method that combines the utility of global network analysis strategies with the ability to detect relevant local differences in network structure. We evaluate the NS jackknife framework with a simulation study and an empirical example comparing global efficiency in children with attention-deficit/hyperactivity disorder (ADHD) and typically developing (TD) children. The NS jackknife framework has been implemented in a public, open-source R package, netjack , available at https://cran.r-project.org/package=netjack .
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 2 (4): 397–417.
Published: 01 October 2018
FIGURES
Abstract
View article
PDF
In cognitive neuroscience, focus is commonly placed on associating brain function with changes in objectively measured external stimuli or with actively generated cognitive processes. In everyday life, however, many forms of cognitive processes are initiated spontaneously, without an individual’s active effort and without explicit manipulation of behavioral state. Recently, there has been increased emphasis, especially in functional neuroimaging research, on spontaneous correlated activity among spatially segregated brain regions (intrinsic functional connectivity) and, more specifically, on intraindividual fluctuations of such correlated activity on various time scales (time-varying functional connectivity). In this Perspective, we propose that certain subtypes of spontaneous cognitive processes are detectable in time-varying functional connectivity measurements. We define these subtypes of spontaneous cognitive processes and review evidence of their representations in time-varying functional connectivity from studies of attentional fluctuations, memory reactivation, and effects of baseline states on subsequent perception. Moreover, we describe how these studies are critical to validating the use of neuroimaging tools (e.g., fMRI) for assessing ongoing brain network dynamics. We conclude that continued investigation of the behavioral relevance of time-varying functional connectivity will be beneficial both in the development of comprehensive neural models of cognition, and in informing on best practices for studying brain network dynamics.