Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-7 of 7
Joaquín Goñi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2025) 9 (1): 38–60.
Published: 03 March 2025
FIGURES
| View All (9)
Abstract
View articletitled, Tangent space functional reconfigurations in individuals at risk for
alcohol use disorder
View
PDF
for article titled, Tangent space functional reconfigurations in individuals at risk for
alcohol use disorder
Author Summary Human brain function constantly adapts to the external environment stimuli and transitions between cognitive states, which can be hindered by alcohol misuse and family history of alcohol use disorder (AUD). In this work, we used a novel methodology that applies Riemannian geometry concepts to functional connectivity to quantify functional reconfiguration of rest-to-task (engaging) and task-to-rest (disengaging) transitions. We ultimately aimed to determine the relationship between AUD risk factors and functional reconfiguration. Our findings showed that engaging functional reconfiguration was diminished in participants with a family history of AUD, whereas disengaging functional reconfiguration was diminished with greater recent drinking behavior. This study suggests that analysis of functional reconfiguration using Riemannian geometry is a promising avenue to better understand rest-to-task and task-to-rest brain transitions. Abstract Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are, nevertheless, scarce. Here, we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform the functional connectomes (FCs) of 54 participants and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning to/from a task would be influenced by family history of AUD (FHA) and other AUD risk factors. Multilinear regression models showed that engaging and disengaging functional reconfiguration were associated with FHA and recent drinking. When engaging in the SST after a rest condition, functional reconfiguration was negatively associated with recent drinking, while functional reconfiguration when disengaging from the SST was negatively associated with FHA. In both models, several other factors contributed to the functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration and that it is related to AUD risk.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2021) 5 (3): 646–665.
Published: 02 September 2021
FIGURES
| View All (4)
Abstract
View articletitled, Toward an information theoretical description of communication in
brain networks
View
PDF
for article titled, Toward an information theoretical description of communication in
brain networks
Modeling communication dynamics in the brain is a key challenge in network neuroscience. We present here a framework that combines two measurements for any system where different communication processes are taking place on top of a fixed structural topology: path processing score (PPS) estimates how much the brain signal has changed or has been transformed between any two brain regions (source and target); path broadcasting strength (PBS) estimates the propagation of the signal through edges adjacent to the path being assessed. We use PPS and PBS to explore communication dynamics in large-scale brain networks. We show that brain communication dynamics can be divided into three main “communication regimes” of information transfer: absent communication (no communication happening); relay communication (information is being transferred almost intact); and transducted communication (the information is being transformed). We use PBS to categorize brain regions based on the way they broadcast information. Subcortical regions are mainly direct broadcasters to multiple receivers; Temporal and frontal nodes mainly operate as broadcast relay brain stations; visual and somatomotor cortices act as multichannel transducted broadcasters. This work paves the way toward the field of brain network information theory by providing a principled methodology to explore communication dynamics in large-scale brain networks.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2021) 5 (3): 666–688.
Published: 02 September 2021
FIGURES
| View All (8)
Abstract
View articletitled, A morphospace of functional configuration to assess configural
breadth based on brain functional networks
View
PDF
for article titled, A morphospace of functional configuration to assess configural
breadth based on brain functional networks
Author Summary Understanding and measuring the ways in which human brain connectivity changes to accommodate a broad range of cognitive and behavioral goals is an important undertaking. We put forth a mesoscopic framework that captures such changes by tracking the topology and integration of information within and between functional networks (FNs) of the brain. Canonically, when FNs are characterized, they are separated from the rest of the brain network. The two metrics proposed in this work, trapping efficiency and exit entropy, quantify the topological and information integration characteristics of FNs while they are still embedded in the overall brain network. Trapping efficiency measures the module’s ability to preserve an incoming signal from escaping its local topology, relative to its total exiting weights. Exit entropy measures the module’s communication preferences with other modules/networks using information theory. When these two metrics are plotted in a 2D graph as a function of different brain states (i.e., cognitive/behavioral tasks), the resulting morphospace characterizes the extent of network reconfiguration between tasks (functional reconfiguration), and the change when moving from rest to an externally engaged “task-positive” state (functional preconfiguration), to collectively define network configural breadth. We also show that these metrics are sensitive to subject, task, and functional network identities. Overall, this method is a promising approach to quantify how human brains adapt to a range of tasks, and potentially to help improve precision clinical neuroscience. Abstract The quantification of human brain functional (re)configurations across varying cognitive demands remains an unresolved topic. We propose that such functional configurations may be categorized into three different types: (a) network configural breadth, (b) task-to task transitional reconfiguration, and (c) within-task reconfiguration. Such functional reconfigurations are rather subtle at the whole-brain level. Hence, we propose a mesoscopic framework focused on functional networks (FNs) or communities to quantify functional (re)configurations. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, trapping efficiency (TE) and exit entropy (EE), which capture topology and integration of information within and between a reference set of FNs. We use this framework to quantify the network configural breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks, and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence, and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (3): 658–677.
Published: 01 July 2020
FIGURES
| View All (6)
Abstract
View articletitled, Multi-timescale hybrid components of the functional brain connectome: A bimodal EEG-fMRI decomposition
View
PDF
for article titled, Multi-timescale hybrid components of the functional brain connectome: A bimodal EEG-fMRI decomposition
Concurrent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) bridge brain connectivity across timescales. During concurrent EEG-fMRI resting-state recordings, whole-brain functional connectivity (FC) strength is spatially correlated across modalities. However, cross-modal investigations have commonly remained correlational, and joint analysis of EEG-fMRI connectivity is largely unexplored. Here we investigated if there exist (spatially) independent FC networks linked between modalities. We applied the recently proposed hybrid connectivity independent component analysis (connICA) framework to two concurrent EEG-fMRI resting-state datasets (total 40 subjects). Two robust components were found across both datasets. The first component has a uniformly distributed EEG frequency fingerprint linked mainly to intrinsic connectivity networks (ICNs) in both modalities. Conversely, the second component is sensitive to different EEG frequencies and is primarily linked to intra-ICN connectivity in fMRI but to inter-ICN connectivity in EEG. The first hybrid component suggests that connectivity dynamics within well-known ICNs span timescales, from millisecond range in all canonical frequencies of FC EEG to second range of FC fMRI . Conversely, the second component additionally exposes linked but spatially divergent neuronal processing at the two timescales. This work reveals the existence of joint spatially independent components, suggesting that parts of resting-state connectivity are co-expressed in a linked manner across EEG and fMRI over individuals. Author Summary Functional connectivity is governed by a whole-brain organization measurable over multiple timescales by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). The relationship across the whole-brain organization captured at the different timescales of EEG and fMRI is largely unknown. Using concurrent EEG-fMRI, we identified spatially independent components consisting of brain connectivity patterns that co-occur in EEG and fMRI over subjects. We observed a component with similar connectivity organization across EEG and fMRI as well as a component with divergent connectivity. The former component governed all EEG frequencies while the latter was modulated by frequency. These findings show that part of functional connectivity organizes in a common spatial layout over several timescales, while a spatially independent part is modulated by frequency-specific information.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (3): 698–713.
Published: 01 July 2020
FIGURES
| View All (6)
Abstract
View articletitled, Uncovering differential identifiability in network properties of human brain functional connectomes
View
PDF
for article titled, Uncovering differential identifiability in network properties of human brain functional connectomes
Author Summary Functional connectome (FC) fingerprinting recently became a topic of great interest in network neuroscience. We recently proposed a framework to improve brain fingerprint (i.e., identifiability) of FCs, which improves not only test-retest reliability but also the correlation of FCs with fluid intelligence. However, does this improvement in FC fingerprints propagate to the derived network measures? In this work we found that improving the fingerprint (differential identifiability) of the functional connectome also improves the “fingerprint” of its network properties. Furthermore, when using the identifiability framework on the network properties directly, certain network properties like search information and communicability add to the FC fingerprint. Finally, we show that enhancement of the fingerprint in the network measures, in a wide range of cognitive tasks, using the identifiability framework also improves task sensitivity in these measures. We show that regardless of whether you are using functional connectomes or the network properties derived from them, using the 𝕀 f framework on the functional connectomes would be a beneficial first step. Abstract The identifiability framework (𝕀 f ) has been shown to improve differential identifiability (reliability across-sessions and -sites, and differentiability across-subjects) of functional connectomes for a variety of fMRI tasks. But having a robust single session/subject functional connectome is just the starting point to subsequently assess network properties for characterizing properties of integration, segregation, and communicability, among others. Naturally, one wonders whether uncovering identifiability at the connectome level also uncovers identifiability on the derived network properties. This also raises the question of where to apply the 𝕀 f framework: on the connectivity data or directly on each network measurement? Our work answers these questions by exploring the differential identifiability profiles of network measures when 𝕀 f is applied (a) on the functional connectomes, and (b) directly on derived network measurements. Results show that improving across-session reliability of functional connectomes (FCs) also improves reliability of derived network measures. We also find that, for specific network properties, application of 𝕀 f directly on network properties is more effective. Finally, we discover that applying the framework, either way, increases task sensitivity of network properties. At a time when the neuroscientific community is focused on subject-level inferences, this framework is able to uncover FC fingerprints, which propagate to derived network properties.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (2): 455–474.
Published: 01 February 2019
FIGURES
| View All (6)
Abstract
View articletitled, Centralized and distributed cognitive task processing in the human connectome
View
PDF
for article titled, Centralized and distributed cognitive task processing in the human connectome
A key question in modern neuroscience is how cognitive changes in a human brain can be quantified and captured by functional connectivity (FC). A systematic approach to measure pairwise functional distance at different brain states is lacking. This would provide a straightforward way to quantify differences in cognitive processing across tasks; also, it would help in relating these differences in task-based FCs to the underlying structural network. Here we propose a framework, based on the concept of Jensen-Shannon divergence, to map the task-rest connectivity distance between tasks and resting-state FC. We show how this information theoretical measure allows for quantifying connectivity changes in distributed and centralized processing in functional networks. We study resting state and seven tasks from the Human Connectome Project dataset to obtain the most distant links across tasks. We investigate how these changes are associated with different functional brain networks, and use the proposed measure to infer changes in the information-processing regimes. Furthermore, we show how the FC distance from resting state is shaped by structural connectivity, and to what extent this relationship depends on the task. This framework provides a well-grounded mathematical quantification of connectivity changes associated with cognitive processing in large-scale brain networks. Author Summary A key question in modern neuroscience is how cognitive changes in a human brain can be quantified and captured by functional connectivity (FC). Here we propose a framework, based on Jensen-Shannon divergence, to define “connectivity distance” and to infer about brain network reconfiguration across different tasks with respect to resting state, and to explore changes in centralized and distributed processing in FCs. Three functional networks (dorsal attention, frontoparietal and DMN) showed major changes in distributed processing and minor changes in centralized processing. Changes in centralized processing depend on the underlying structural connectivity weights and structural path “hiddenness.” These findings suggest that the cognitive “switch” between resting state and task states is a complex interplay between maximally and minimally distant functional connections, and the underlying structure.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 2 (3): 306–322.
Published: 01 September 2018
FIGURES
| View All (4)
Abstract
View articletitled, Mapping hybrid functional-structural connectivity traits in the human connectome
View
PDF
for article titled, Mapping hybrid functional-structural connectivity traits in the human connectome
One of the crucial questions in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between these structural and functional layers is an open problem that involves novel conceptual ways of tackling this question. We here propose an extension of the Connectivity Independent Component Analysis (connICA) framework to identify joint structural-functional connectivity traits. Here, we extend connICA to integrate structural and functional connectomes by merging them into common “hybrid” connectivity patterns that represent the connectivity fingerprint of a subject. We tested this extended approach on the 100 unrelated subjects from the Human Connectome Project. The method is able to extract main independent structural-functional connectivity patterns from the entire cohort that are sensitive to the realization of different tasks. The hybrid connICA extracts two main task-sensitive hybrid traits. The first trait encompasses the within and between connections of dorsal attentional and visual areas, as well as frontoparietal circuits. The second trait mainly encompasses the connectivity between visual, attentional, default mode network (DMN), and subcortical network. Overall, these findings confirm the potential of the hybrid connICA for the compression of structural/functional connectomes into integrated patterns from a set of individual brain networks. Author Summary A crucial question in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between structural and functional layers is an open problem that requires novel conceptual frameworks. We here propose an extension of our connectivity independent component analysis (connICA) framework to integrate structural and functional connectomes and obtain hybrid connectivity fingerprints. We use this method to extract two task-sensitive independent structural-functional connectivity patterns. The first encompasses the within and between connections of dorsal attentional and visual areas, as well as frontoparietal circuits. The second mainly encompasses the connectivity between visual, attentional, DMN, and subcortical networks. These findings confirm the potential of hybrid connICA for the compression of structural/functional connectomes into integrated patterns.
Includes: Supplementary data