Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Kirsten Hilger
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2021) 5 (3): 631–645.
Published: 02 September 2021
FIGURES
Abstract
View article
PDF
We propose that the application of network theory to established psychological personality conceptions has great potential to advance a biologically plausible model of human personality. Stable behavioral tendencies are conceived as personality “traits.” Such traits demonstrate considerable variability between individuals, and extreme expressions represent risk factors for psychological disorders. Although the psychometric assessment of personality has more than hundred years tradition, it is not yet clear whether traits indeed represent “biophysical entities” with specific and dissociable neural substrates. For instance, it is an open question whether there exists a correspondence between the multilayer structure of psychometrically derived personality factors and the organizational properties of traitlike brain systems. After a short introduction into fundamental personality conceptions, this article will point out how network neuroscience can enhance our understanding about human personality. We will examine the importance of intrinsic (task-independent) brain connectivity networks and show means to link brain features to stable behavioral tendencies. Questions and challenges arising from each discipline itself and their combination are discussed and potential solutions are developed. We close by outlining future trends and by discussing how further developments of network neuroscience can be applied to personality research.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (2): 567–588.
Published: 01 May 2019
FIGURES
Abstract
View article
PDF
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders with significant and often lifelong effects on social, emotional, and cognitive functioning. Influential neurocognitive models of ADHD link behavioral symptoms to altered connections between and within functional brain networks. Here, we investigate whether network-based theories of ADHD can be generalized to understanding variations in ADHD-related behaviors within the normal (i.e., clinically unaffected) adult population. In a large and representative sample, self-rated presence of ADHD symptoms varied widely; only 8 out of 291 participants scored in the clinical range. Subject-specific brain network graphs were modeled from functional MRI resting-state data and revealed significant associations between (nonclinical) ADHD symptoms and region-specific profiles of between-module and within-module connectivity. Effects were located in brain regions associated with multiple neuronal systems including the default-mode network, the salience network, and the central executive system. Our results are consistent with network perspectives of ADHD and provide further evidence for the relevance of an appropriate information transfer between task-negative (default-mode) and task-positive brain regions. More generally, our findings support a dimensional conceptualization of ADHD and contribute to a growing understanding of cognition as an emerging property of functional brain networks. Author Summary Neurocognitive models of ADHD link behavioral symptoms to altered connections between and within functional brain networks. We investigate whether these network-based theories of ADHD can be generalized to ADHD-related behaviors within the normal adult population. Subject-specific brain graphs were modeled from functional MRI resting-state data of a large and representative sample ( N = 291). Significant associations between ADHD-related behaviors and region-specific profiles of between-module and within-module connectivity were observed in brain regions associated with multiple functional systems including the default-mode network, the salience network, and the central executive system. Our results support a dimensional conceptualization of ADHD and enforce network-based models of ADHD by providing further evidence for the relevance of an appropriate information transfer between task-negative (default-mode) and task-positive brain regions.
Includes: Supplementary data