Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Leonardo Angelini
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (3): 910–924.
Published: 01 September 2020
FIGURES
| View All (8)
Abstract
View articletitled, Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age
View
PDF
for article titled, Synergistic information in a dynamical model implemented on the human structural connectome reveals spatially distinct associations with age
Author Summary In a previous study implementing the Ising model on a 2D lattice, we showed that the joint synergistic information shared by two variables on a target one peaks before the transition to an ordered state (critical point). Here we implemented the same model on individual structural connectomes, to answer these questions: - Does the synergy still peak before the critical point in a nonuniform network? - Are the hubs of structural connectivity also hubs of synergy? - Is there association with age? We found that synergy still peaks before the critical temperature and that hubs of structural connectivity are not among the nodes towards which synergy is highest. Furthermore, using robust measures of association we found both positive and negative associations of synergy with age, in localized clusters. In some regions this association is continuous with age; in others it is limited to around the first 30 years of age. Abstract We implement the dynamical Ising model on the large-scale architecture of white matter connections of healthy subjects in the age range 4–85 years, and analyze the dynamics in terms of the synergy, a quantity measuring the extent to which the joint state of pairs of variables is projected onto the dynamics of a target one. We find that the amount of synergy in explaining the dynamics of the hubs of the structural connectivity (in terms of degree strength) peaks before the critical temperature, and can thus be considered as a precursor of a critical transition. Conversely, the greatest amount of synergy goes into explaining the dynamics of more central nodes. We also find that the aging of structural connectivity is associated with significant changes in the simulated dynamics: There are brain regions whose synergy decreases with age, in particular the frontal pole, the subcallosal area, and the supplementary motor area; these areas could then be more likely to show a decline in terms of the capability to perform higher order computation (if structural connectivity was the sole variable). On the other hand, several regions in the temporal cortex show a positive correlation with age in the first 30 years of life, that is, during brain maturation.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (3): 242–253.
Published: 01 October 2017
FIGURES
| View All (8)
Abstract
View articletitled, Consensus clustering approach to group brain connectivity matrices
View
PDF
for article titled, Consensus clustering approach to group brain connectivity matrices
A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (a) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (b) cluster the distance matrix for each node; (c) build the consensus network from the corresponding partitions; and (d) extract groups of subjects by finding the communities of the consensus network thus obtained. Different from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pretraining step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real datasets show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix.