Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Marcelo G. Mattar
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 02 (02): 128–149.
Published: 01 June 2018
FIGURES
| View All (5)
Abstract
View article
PDF
Value guides behavior. With knowledge of stimulus values and action consequences, behaviors that maximize expected reward can be selected. Prior work has identified several brain structures critical for representing both stimuli and their values. Yet, it remains unclear how these structures interact with one another and with other regions of the brain to support the dynamic acquisition of value-related knowledge. Here, we use a network neuroscience approach to examine how BOLD functional networks change as 20 healthy human subjects learn the values of novel visual stimuli over the course of four consecutive days. We show that connections between regions of the visual, frontal, and cingulate cortices become stronger as learning progresses, with some of these changes being specific to the type of feedback received during learning. These results demonstrate that functional networks dynamically track behavioral improvement in value judgments, and that interactions between network communities form predictive biomarkers of learning. Author Summary Rational human behavior is the pursuit of actions that maximize expected reward. These rewards can be understood as stimulus-value contingencies, learned by experience throughout our lives. Various structures have been recognized to participate in these learning processes. Yet, an understanding of how these structures interact with one another and with other brain regions remains vastly unexplored. Here, we propose a novel analytical framework utilizing and extending techniques from the dynamic network neuroscience to ask “How do our brains change when we learn values?” We find that interactions between sensory and fronto-cingulate structures grow stronger as learning progresses, bringing together several isolated findings in the cognitive neuroscience of value-based behavior and extending our understanding of human learning in general.
Includes: Supplementary data