Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Matt Cieslak
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 2 (3): 362–380.
Published: 01 September 2018
FIGURES
| View All (7)
Abstract
View articletitled, Effect of different spatial normalization approaches on tractography and structural brain networks
View
PDF
for article titled, Effect of different spatial normalization approaches on tractography and structural brain networks
To facilitate the comparison of white matter morphologic connectivity across target populations, it is invaluable to map the data to a standardized neuroanatomical space. Here, we evaluated direct streamline normalization (DSN), where the warping was applied directly to the streamlines, with two publically available approaches that spatially normalize the diffusion data and then reconstruct the streamlines. Prior work has shown that streamlines generated after normalization from reoriented diffusion data do not reliably match the streamlines generated in native space. To test the impact of these different normalization methods on quantitative tractography measures, we compared the reproducibility of the resulting normalized connectivity matrices and network metrics with those originally obtained in native space. The two methods that reconstruct streamlines after normalization led to significant differences in network metrics with large to huge standardized effect sizes, reflecting a dramatic alteration of the same subject’s native connectivity. In contrast, after normalizing with DSN we found no significant difference in network metrics compared with native space with only very small-to-small standardized effect sizes. DSN readily outperformed the other methods at preserving native space connectivity and introduced novel opportunities to define connectome networks without relying on gray matter parcellations. Author Summary Direct streamline normalization (DSN) directly warps the streamlines into any template space by using the transformations output from Advanced Normalization Tools (ANTs). DSN overcomes the limitations of diffusion weighted images (DWI) spatial normalization. It allows DWIs to be acquired with any desired sampling scheme. Fiber orientation distributions (FODs) or orientation distribution functions (ODFs) can also be reconstructed using any desired method and streamlines generated using any algorithm. Most importantly, it avoids the problem of generating tracts from FODs or ODFs that have become distorted because of spatial normalization. Our results show that DSN has minimal influence on tractography measures such as tract count and structure and does not significantly alter structural networks with only very small to small effect sizes. We have developed a framework in Python that works with most diffusion software platforms. It is available at http://github.com/clintg6/DSN .