Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Matthew Galdo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (4): 1032–1065.
Published: 01 October 2022
FIGURES
| View All (17)
Abstract
View article
PDF
Author Summary In this article, we propose a two-step pipeline to explore task-dependent functional coactivations of brain clusters with constraints imposed from structural connectivity networks. In the first step, the pipeline employs a nonparametric Bayesian clustering method that can estimate the optimal number of clusters, cluster assignments of brain regions of interest, and the strength of within- and between-cluster connections without any prior knowledge. In the second step, a factor analysis model is applied to functional data with factors defined as the obtained structural clusters and the factor structure informed by the structural network. Abstract In this article, we propose a two-step pipeline to explore task-dependent functional coactivations of brain clusters with constraints from the structural connectivity network. In the first step, the pipeline employs a nonparametric Bayesian clustering method that can estimate the optimal number of clusters, cluster assignments of brain regions of interest (ROIs), and the strength of within- and between-cluster connections without any prior knowledge. In the second step, a factor analysis model is applied to functional data with factors defined as the obtained structural clusters and the factor structure informed by the structural network. The coactivations of ROIs and their clusters can be studied by correlations between factors, which can largely differ by ongoing cognitive task. We provide a simulation study to validate that the pipeline can recover the underlying structural and functional network. We also apply the proposed pipeline to empirical data to explore the structural network of ROIs obtained by the Gordon parcellation and study their functional coactivations across eight cognitive tasks and a resting-state condition.
Includes: Supplementary data