Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Morten L. Kringelbach
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience 1–42.
Published: 07 December 2022
Abstract
View article
PDF
Large variability exists across brain regions in health and disease, considering their cellular and molecular composition, connectivity and function. Large-scale whole-brain models comprising coupled brain regions provide insights into the underlying dynamics that shape complex patterns of spontaneous brain activity. In particular, biophysically grounded mean-field whole-brain models in the asynchronous regime were used to demonstrate the dynamical consequences of including regional variability. Nevertheless, the role of heterogeneities when brain dynamics are supporting by synchronous oscillating state, which is a ubiquitous phenomenon in brain, remains poorly understood. Here, we implemented two models capable of presenting oscillatory behaviour with different levels of abstraction: a phenomenological Stuart Landau model and an exact mean-field model. The fit of these models informed by structural-to-functional–weighted MRI signal (T1w/T2w) allowed to explore the implication of the inclusion of heterogeneities for modelling resting-state fMRI recordings from healthy participants. We found that disease-specific regional functional heterogeneity imposed dynamical consequences within the oscillatory regime in fMRI recordings from neurodegeneration with specific impacts in brain atrophy/structure (Alzheimer patients). Overall, we found that models with oscillations perform better when structural and functional regional heterogeneities are considered showing that phenomenological and biophysical models behave similarly at the brink of the Hopf bifurcation.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (4): 1104–1124.
Published: 01 October 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Psychedelic drugs show promise as safe and effective treatments for neuropsychiatric disorders, yet their mechanisms of action are not fully understood. A fundamental hypothesis is that psychedelics work by dose-dependently changing the functional hierarchy of brain dynamics, but it is unclear whether different psychedelics act similarly. Here, we investigated the changes in the brain’s functional hierarchy associated with two different psychedelics (LSD and psilocybin). Using a novel turbulence framework, we were able to determine the vorticity, that is, the local level of synchronization, that allowed us to extend the standard global time-based measure of metastability to become a local-based measure of both space and time. This framework produced detailed signatures of turbulence-based hierarchical change for each psychedelic drug, revealing consistent and discriminate effects on a higher level network, that is, the default mode network. Overall, our findings directly support a prior hypothesis that psychedelics modulate (i.e., “compress”) the functional hierarchy and provide a quantification of these changes for two different psychedelics. Implications for therapeutic applications of psychedelics are discussed. Author Summary Significant progress has been made in understanding the effects of psychedelics on brain function. One of the main hypotheses is that psychedelics work by changing the functional hierarchy of brain dynamics in a dose-dependent manner, modulating the encoding of the precision of priors, beliefs, or assumptions in the brain. We used a novel turbulence framework to investigate the changes in the brain’s functional hierarchy associated with two different psychedelics (LSD and psilocybin). This framework produced detailed signatures of turbulence-based hierarchical change for each psychedelic drug, revealing consistent and discriminate effects on a higher level network, that is, the default mode network.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (3): 653–655.
Published: 01 July 2019
Abstract
View article
PDF
Topology, in its many forms, describes relations. It has thus long been a central concept in neuroscience, capturing structural and functional aspects of the organization of the nervous system and their links to cognition. Recent advances in computational topology have extended the breadth and depth of topological descriptions. This Focus Feature offers a unified overview of the emerging field of topological neuroscience and of its applications across the many scales of the nervous system from macro-, over meso-, to microscales.