Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Robert Guggenberger
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (4): 1205–1218.
Published: 01 October 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Recently, neuroscience has seen a shift from localist approaches to network-wide investigations of brain function. Neurophysiological signals across different spatial and temporal scales provide insight into neural communication. However, additional methodological considerations arise when investigating network-wide brain dynamics rather than local effects. Specifically, larger amounts of data, investigated across a higher dimensional space, are necessary. Here, we present FiNN ( Fi nd N europhysiological N etworks), a novel toolbox for the analysis of neurophysiological data with a focus on functional and effective connectivity. FiNN provides a wide range of data processing methods and statistical and visualization tools to facilitate inspection of connectivity estimates and the resulting metrics of brain dynamics. The Python toolbox and its documentation are freely available as Supporting Information . We evaluated FiNN against a number of established frameworks on both a conceptual and an implementation level. We found FiNN to require much less processing time and memory than other toolboxes. In addition, FiNN adheres to a design philosophy of easy access and modifiability, while providing efficient data processing implementations. Since the investigation of network-level neural dynamics is experiencing increasing interest, we place FiNN at the disposal of the neuroscientific community as open-source software.