Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Steven M. Thurman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (3): 611–636.
Published: 01 July 2020
FIGURES
| View All (7)
Abstract
View article
PDF
An overarching goal of neuroscience research is to understand how heterogeneous neuronal ensembles cohere into networks of coordinated activity to support cognition. To investigate how local activity harmonizes with global signals, we measured electroencephalography (EEG) while single pulses of transcranial magnetic stimulation (TMS) perturbed occipital and parietal cortices. We estimate the rapid network reconfigurations in dynamic network communities within specific frequency bands of the EEG, and characterize two distinct features of network reconfiguration, flexibility and allegiance, among spatially distributed neural sources following TMS. Using distance from the stimulation site to infer local and global effects, we find that alpha activity (8–12 Hz) reflects concurrent local and global effects on network dynamics. Pairwise allegiance of brain regions to communities on average increased near the stimulation site, whereas TMS-induced changes to flexibility were generally invariant to distance and stimulation site. In contrast, communities within the beta (13–20 Hz) band demonstrated a high level of spatial specificity, particularly within a cluster comprising paracentral areas. Together, these results suggest that focal magnetic neurostimulation to distinct cortical sites can help identify both local and global effects on brain network dynamics, and highlight fundamental differences in the manifestation of network reconfigurations within alpha and beta frequency bands. Author Summary TMS may be used to probe the causal link between local regional activity and global brain dynamics. Using simultaneous TMS-EEG and dynamic community detection, we introduce what we call “resonating communities” or frequency band-specific clusters in the brain, as a way to index local and global processing. These resonating communities within the alpha and beta bands display both global (or integrating) behavior and local specificity, highlighting fundamental differences in the manifestation of network reconfigurations.
Includes: Supplementary data