Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Tyler M. Moore
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (3): 1153–1180.
Published: 01 October 2023
FIGURES
| View All (7)
Abstract
View article
PDF
The Hurst exponent ( H ) isolated in fractal analyses of neuroimaging time series is implicated broadly in cognition. Within this literature, H is associated with multiple mental disorders, suggesting that H is transdimensionally associated with psychopathology. Here, we unify these results and demonstrate a pattern of decreased H with increased general psychopathology and attention-deficit/hyperactivity factor scores during a working memory task in 1,839 children. This pattern predicts current and future cognitive performance in children and some psychopathology in 703 adults. This pattern also defines psychological and functional axes associating psychopathology with an imbalance in resource allocation between fronto-parietal and sensorimotor regions, driven by reduced resource allocation to fronto-parietal regions. This suggests the hypothesis that impaired working memory function in psychopathology follows from a reduced cognitive resource pool and a reduction in resources allocated to the task at hand. Author Summary We study how the complexity of brain signals is associated with psychopathology. Using a measure of the fractalness of temporal brain dynamics, we find that psychopathology is associated with less fractal and less complex brain signals globally. In addition to this global pattern, we investigate spatial variations in the fractalness of brain signals. We find that disruptions in cognitive resources during a working memory task come from reductions in resources allocated to frontal regions alone. In addition, we find that these patterns of resource allocation are predictive of cognitive performance on multiple working memory tasks and a future working memory task. These findings suggest that future investigations of fractal brain dynamics in other contexts may help researchers better understand the mechanisms behind psychopathology-associated cognitive impairment.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (1): 234–274.
Published: 16 March 2022
FIGURES
| View All (6)
Abstract
View article
PDF
In systems neuroscience, most models posit that brain regions communicate information under constraints of efficiency. Yet, evidence for efficient communication in structural brain networks characterized by hierarchical organization and highly connected hubs remains sparse. The principle of efficient coding proposes that the brain transmits maximal information in a metabolically economical or compressed form to improve future behavior. To determine how structural connectivity supports efficient coding, we develop a theory specifying minimum rates of message transmission between brain regions to achieve an expected fidelity, and we test five predictions from the theory based on random walk communication dynamics. In doing so, we introduce the metric of compression efficiency, which quantifies the trade-off between lossy compression and transmission fidelity in structural networks. In a large sample of youth ( n = 1,042; age 8–23 years), we analyze structural networks derived from diffusion-weighted imaging and metabolic expenditure operationalized using cerebral blood flow. We show that structural networks strike compression efficiency trade-offs consistent with theoretical predictions. We find that compression efficiency prioritizes fidelity with development, heightens when metabolic resources and myelination guide communication, explains advantages of hierarchical organization, links higher input fidelity to disproportionate areal expansion, and shows that hubs integrate information by lossy compression. Lastly, compression efficiency is predictive of behavior—beyond the conventional network efficiency metric—for cognitive domains including executive function, memory, complex reasoning, and social cognition. Our findings elucidate how macroscale connectivity supports efficient coding and serve to foreground communication processes that utilize random walk dynamics constrained by network connectivity. Author Summary Macroscale communication between interconnected brain regions underpins most aspects of brain function and incurs substantial metabolic cost. Understanding efficient and behaviorally meaningful information transmission dependent on structural connectivity has remained challenging. We validate a model of communication dynamics atop the macroscale human structural connectome, finding that structural networks support dynamics that strike a balance between information transmission fidelity and lossy compression. Notably, this balance is predictive of behavior and explanatory of biology. In addition to challenging and reformulating the currently held view that communication occurs by routing dynamics along metabolically efficient direct anatomical pathways, our results suggest that connectome architecture and behavioral demands yield communication dynamics that accord to neurobiological and information theoretical principles of efficient coding and lossy compression.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (1): 14–30.
Published: 01 February 2017
Abstract
View article
PDF
AUTHOR SUMMARY Our ability to thoughtfully engage with the world around us changes appreciably as we transition from childhood to adulthood. Yet, how our brains develop to enable that change remains far from understood. Here we used network science—traditionally applied to the study of social networks like Facebook or Twitter—and machine learning to show that growing cognitive abilities are accompanied by greater flexibility of brain regions within distributed networks. This flexibility is greatest in the executive system, which is critical for higher-order cognitive functions and increases in expression and flexibility from childhood to young adulthood. These results suggest that healthy development is facilitated by an increasing precedence of executive networks and a greater switching of the regions and interactions subserving these networks. Abstract Cognitive function evolves significantly over development, enabling flexible control of human behavior. Yet, how these functions are instantiated in spatially distributed and dynamically interacting networks, or graphs, that change in structure from childhood to adolescence is far from understood. Here we applied a novel machine-learning method to track continuously overlapping and time-varying subgraphs in the brain at rest within a sample of 200 healthy youth (ages 8–11 and 19–22) drawn from the Philadelphia Neurodevelopmental Cohort. We uncovered a set of subgraphs that capture surprisingly integrated and dynamically changing interactions among known cognitive systems. We observed that subgraphs that were highly expressed were especially transient, flexibly switching between high and low expression over time. This transience was particularly salient in a subgraph predominantly linking frontoparietal regions of the executive system, which increases in both expression and flexibility from childhood to young adulthood. Collectively, these results suggest that healthy development is accompanied by an increasing precedence of executive networks and a greater switching of the regions and interactions subserving these networks.