Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-6 of 6
METHODS
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 2 (1): 41–59.
Published: 01 March 2018
FIGURES
| View All (8)
Abstract
View article
PDF
Electroencephalography (EEG) allows recording of cortical activity at high temporal resolution. EEG recordings can be summarized along different dimensions using network-level quantitative measures, such as channel-to-channel correlation, or band power distributions across channels. These reveal network patterns that unfold over a range of different timescales and can be tracked dynamically. Here we describe the dynamics of network state transitions in EEG recordings of spontaneous brain activity in normally developing infants and infants with severe early infantile epileptic encephalopathies ( n = 8, age: 1–8 months). We describe differences in measures of EEG dynamics derived from band power, and correlation-based summaries of network-wide brain activity. We further show that EEGs from different patient groups and controls may be distinguishable on a small set of the novel quantitative measures introduced here, which describe dynamic network state switching. Quantitative measures related to the sharpness of switching from one correlation pattern to another show the largest differences between groups. These findings reveal that the early epileptic encephalopathies are associated with characteristic dynamic features at the network level. Quantitative network-based analyses like the one presented here may in the future inform the clinical use of quantitative EEG for diagnosis.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (4): 357–380.
Published: 01 December 2017
FIGURES
| View All (9)
Abstract
View article
PDF
Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (3): 208–221.
Published: 01 October 2017
FIGURES
| View All (6)
Abstract
View article
PDF
Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph theory and network science can be used for the characterization of time series. This approach has proved a convenient tool, and visibility graphs have found applications across several disciplines. Recently, an approach has been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (a) this approach allows vs to simultaneously capture and process relevant aspects of both local and global dynamics in an easy and intuitive way, and (b) this provides a suggestive bridge between time series and network theory that nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals differences in the similarities of temporal networks (and thus in correlated dynamics) across resting-state networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be picked up by this approach. Author Summary Here we present the first application of multivariate visibility graphs to fMRI data. Visibility graphs are a way to represent a time series as a temporal network, evidencing specific aspects of its dynamics, such as extreme events. Multivariate time series, as those encountered in neuroscience, and in fMRI in particular, can be seen as a multiplex network, in which each layer represents a time series (a region of interest in the brain in our case). Here we report the method, we describe some relevant aspects of its application to BOLD time series, and we discuss the analogies and differences with existing methods. Finally, we present an application to a high-quality, publicly available dataset, containing healthy subjects and psychotic patients, and we discuss our findings. All the code to reproduce the analyses and the figures is publicly available.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (3): 242–253.
Published: 01 October 2017
FIGURES
| View All (8)
Abstract
View article
PDF
A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (a) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (b) cluster the distance matrix for each node; (c) build the consensus network from the corresponding partitions; and (d) extract groups of subjects by finding the communities of the consensus network thus obtained. Different from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pretraining step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real datasets show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (2): 69–99.
Published: 01 June 2017
FIGURES
| View All (11)
Abstract
View article
PDF
Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i) to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto. Author Summary Temporal network theory is a subfield of network theory that has had limited application to date within network neuroscience. The aims of this work are to introduce temporal network theory, define the metrics relevant to the context of network neuroscience, and illustrate their potential by analyzing a resting-state fMRI dataset. We found both between-subjects and between-task differences that illustrate the potential for these tools to be applied in a wider context. Our tools for analyzing temporal networks have been released in a Python package called Teneto.
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (3): 222–241.
Published: 01 January 2017
FIGURES
| View All (10)
Abstract
View article
PDF
This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity . This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of Bayesian model reduction to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM—with functional connectivity priors—is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.