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ABSTRACT

Learning non-native phonetic categories in adulthood is an exceptionally challenging task,
characterized by large interindividual differences in learning speed and outcomes. The
neurobiological mechanisms underlying the interindividual differences in the learning efficacy
are not fully understood. Here we examine the extent to which training-induced neural
representations of non-native Mandarin tone categories in English listeners (n = 53) are
increasingly similar to those of the native listeners (n = 33) who acquired these categories early
in infancy. We assess the extent to which the neural similarities in representational structure
between non-native learners and native listeners are robust neuromarkers of interindividual
differences in learning success. Using intersubject neural representational similarity (IS-NRS)
analysis and predictive modeling on two functional magnetic resonance imaging datasets,
we examined the neural representational mechanisms underlying speech category learning
success. Learners’ neural representations that were significantly similar to the native listeners
emerged in brain regions mediating speech perception following training; the extent of the
emerging neural similarities with native listeners significantly predicted the learning speed
and outcome in learners. The predictive power of IS-NRS outperformed models with other
neural representational measures. Furthermore, neural representations underlying successful
learning were multidimensional but cost-efficient in nature. The degree of the emergent
native-similar neural representations was closely related to the robustness of neural sensitivity
to feedback in the frontostriatal network. These findings provide important insights into the
experience-dependent representational neuroplasticity underlying successful speech learning
in adulthood and could be leveraged in designing individualized feedback-based training
paradigms that maximize learning efficacy.
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INTRODUCTION

During infancy, dramatic changes occur in the brain networks that support speech processing
(Kuhl, 2004, 2010). Language-general perception narrows to become more selective to the statis-
tical regularities of the native environment (Cheour et al., 1998; Garcia-Lazaro et al., 2011; Kuhl,
2004), promoting greater sensitivity to native speech sound categories (Kuhl, 2010; Nakahara
et al., 2004; Vallabha et al., 2007). However, experience-dependent perceptual narrowing can
also alter low-level perception and interfere in the acquisition of non-native speech categories
in adulthood (Kuhl et al., 2008; Myers, 2014). Non-native speech categories can be acquired
to native-like proficiency in adulthood when learners are provided some amount of feedback
and with sufficient intensity of training (Lively et al., 1993; Reetzke et al., 2018). However, even
in adults with similar language backgrounds, with similar cognitive, socio-economic, motivation,
and hearing status, and undergoing identical training paradigms, large interindividual differences
define speech learning performance (Ellis, 2004). Indeed, individual differences are ubiquitous in
the acquisition of most subcomponents of language (Kidd & Donnelly, 2020; Kidd et al., 2018).
This is especially the case when adults with no tonal language experience learn to categorize
lexically relevant tone patterns (Chandrasekaran et al., 2010; Wong & Perrachione, 2007). Our
goal here is to elucidate the neural mechanisms that underlie the extensive interindividual vari-
ability in non-native tone-category learning success. We examine the following questions. First,
are the emerging neural representations of linguistic-tone categories in the successful adult learners
fundamentally similar or dissimilar to the neural representations that are acquired in early infancy?
That is, is the similarity in the neural representations between adult learners and native listeners a
robust neural neuromarker of learning success? Second, is the feedback sensitivity in the corticos-
triatal systems a key indicator of individual differences in learning success and the degree of the
putative “nativeness” of neural representations?

These questions relate to theoretical positions adopted in the domain of second language
(L2) acquisition to explain individual variability in attainments. Much of the focus in this lit-
erature is on the learning of grammatical structures; however, this literature provides a theo-
retical scaffolding for learning non-native phonology. The shallow structure hypothesis posits
that the representations underlying L2 acquisition have less detail relative to those underlying
native language (L1) acquisition (Clahsen & Felser, 2006a, 2006b, 2018; also see Ullman,
2006). The fundamental difference hypothesis posits a lack of convergence between non-
native and native language representations and proposes that L2 learning necessitates relying
on domain-general learning mechanisms, such as executive control functions and feedback
processes (Bley-Vroman, 1990, 2009). These theoretical perspectives not only explain the dif-
ferences between L1 and L2 acquisition and representation, but also imply that the comparison
between the representations of non-native learners’ L2 and native speakers’ L1 could poten-
tially reflect the nativeness in L2 processing and attainment for the learners (Birdsong, 2018;
Hartshorne et al., 2018). For example, using fMRI with traditional univariate activation-based
analysis approaches, quantitative differences and similarities in brain activations have been
found between L1 and L2 processes where the degree of similarity is dependent on the level
of L2 proficiency and age of acquisition (Abutalebi, 2008; Chee et al., 1999; Feng et al., 2015;
Morgan-Short et al., 2015; Perani & Abutalebi, 2005; Perani et al., 1996) Moving beyond the
activation-based group-level comparisons between L1 and L2, here we focus on examining
the multivariate representation-based neural mechanisms underlying the interindividual vari-
ability in the acquisition of a new phonological structure not present in English–lexical tones.

In tone languages, pitch information can alter word meaning (Yip, 2012). For native
speakers of tone languages, extracting pitch patterns from the incoming auditory stream and
mapping key pitch features to tone categories are critical for speech communication. In

Multivariate representation-based
neural mechanisms:
Refers to neural mechanisms
underlying information
representation revealed by
multivariate pattern analyses.
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contrast, non-native listeners who do not have tonal language experience have great difficulty
in discriminating tonal contrasts with similar pitch patterns (Reid et al., 2015; So & Best, 2010).
This discrimination difficulty may be mainly because tonal information is not linguistically
relevant to non-native listeners’ phonological systems (Best, 1995; Reid et al., 2015). The
challenges in discrimination and learning have also been viewed from the perspective of
feature-weighting (Chandrasekaran, Gandour, & Krishnan, 2007; Chandrasekaran et al.,
2010). For contour-tone languages like Mandarin, at least two pitch-related dimensions define
tone categories: pitch height and slope; both native and non-native listeners weight pitch height
significantly during categorization. In contrast, the weighting of pitch slope or the combination
of pitch height and direction (i.e., contour: time-varying height) is strongly modulated by
language experience, with native listeners weighting this dimension more heavily than non-
native listeners (Chandrasekaran, Krishnan, & Gandour, 2007). The increasing weighting of
pitch contour allows for a more stable mapping of tone categories across contexts and talkers
with varying fundamental frequencies like native listeners, which could increase the probability
of successful categorization and learning.

Successful learners must establish new representations of novel tone categories by mapping
highly time-varying pitch patterns to stable tone categories (Feng et al., 2019), a key step for
learning the lexicon. To achieve this, learners would likely need to update their internally
emerging representations with an increased weighting of key dimensions that underlie the na-
tive tone perceptual space. Here, we assess the extent to which the emerging neural represen-
tations of tone categories and the underlying dimensions acquired in adulthood are similar to
the representations in native Mandarin listeners who use tones linguistically. We specifically
compare the detailed representational structure (including all tonal contrasts under different
syllable contexts) in the brain with a hypothesis that more successful learners demonstrate
emerging representational patterns that are more similar to those in native listeners.

Finally, we test the hypothesis that the corticostriatal learning systems that are sensitive to
feedback valence are critical neural driving sources of individual differences in learning effi-
cacy and the training-related neural representational plasticity in adulthood. An emerging per-
spective of the neural functionality of feedback is that adult learners require feedback,
processed by the corticostriatal networks, to build novel speech category representations
(i.e., sound-to-category; Chandrasekaran, Yi, & Maddox, 2014; Feng et al., 2019; Lim et al.,
2019; Yi et al., 2016). Per the dual-learning systems (DLS) model (Chandrasekaran, Koslov, &
Maddox, 2014; Chandrasekaran, Yi, & Maddox, 2014), a reflective (sound-to-rule mapping)
system and a reflexive (sound-to-reward mapping) system operate on a trial-by-trial basis to
assist sound-to-category learning. The reflective system involves the frontoparietal attentional
network and the hippocampus, which operates by generating and testing hypotheses based on
corrective feedback; the reflexive system, on the other hand, involves the striatum in mapping
stimuli to motor responses that result in rewards. This DLS model focuses on speech category
learning in adulthood. The corticostriatal systems that subserve category learning in the DLS
model may be ubiquitous to the acquisition of other language subcomponents for adult
learners. Indeed, previous studies have proposed comparable cortical-subcortical systems that
drive reward-dependent acquisition of novel words (Ripolles et al., 2014, 2016).

To test the two hypotheses, we analyzed data from a tone-category learning experiment that
leveraged previously collected fMRI data to assess emerging representations in English-speaking
learners (n = 53) as they learned to categorize non-native tone categories with feedback (Feng
et al., 2019; Yi et al., 2016). To quantify the degree of the nativeness in neural representational
structure for each learner, we conducted a new fMRI study in which a group of native Mandarin
speakers (n = 33) performed the same tone categorization task with the same set of stimuli as

Corticostriatal learning systems:
Refers to a set of cortical and striatal
regions that contribute to learning
elements of a new language (e.g.,
new speech categories).
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the non-native learners but without feedback. The behavior response patterns of the learners
were modeled with representational models that are informed by the acoustic and non-
acoustic category-related features as well as the neural representational patterns from the na-
tive Mandarin speakers to examine the degree of emerging nativeness in representations.
Importantly, using intersubject neural representational similarity (IS-NRS) analysis (Chen et al.,
2017; Diedrichsen & Kriegeskorte, 2017), we measured the extent of shared patterns in neural
representational structure between learners and native listeners (i.e., IS-NRS). To test our hypoth-
eses, we used a predictive modeling approach (Gabrieli et al., 2015; Rosenberg et al., 2016)
with learners’ IS-NRSs as neural predictors to predict their behavioral learning efficacy (i.e.,
speed and outcome). To further evaluate the predictability of IS-NRS, we compared the predic-
tive power of IS-NRS with those of models with other neural representational measures. To as-
sess the detailed representational structure underlying successful learning, we combined
predictive analytics and a data-driven single vector decomposition procedure that estimated
the relationship between dimensionality and learning efficacy. Finally, to evaluate the underly-
ing driving factors of the interindividual variability in learning success and emerging represen-
tations, we calculated a neural feedback sensitivity index to predict learning speed and outcome
as well as the degree of learners’ nativeness in neural representations (i.e., IS-NRS).

MATERIALS AND METHODS

Participants

Native speakers of Mandarin (n = 33; 18 females; right-handed; age range, 20–37 years; mean
age = 25.5 years) were recruited from the communities around the National Taiwan
University, Taipei. These native participants were highly proficient at listening and speaking
in standard Mandarin. They were recruited to participate in a tone categorization fMRI exper-
iment designed specifically for the current study. This experiment was approved by the
Research Ethics Committee at National Taiwan University. Native speakers of English were
recruited from the communities around The University of Texas at Austin (n = 53; 39 females;
right-handed; age range, 18–35 years; mean age = 21.8 years). These English-speaking partic-
ipants did not have tonal language experience and had minimal formal music training expe-
rience (<3 years). All the participants reported normal hearing ability, which was confirmed by
audiological testing (pure tone thresholds < 25 dB HL at 1, 2, and 4 kHz). They had normal or
corrected-to-normal vision and did not have any neurological impairments. Training protocols
and materials were approved by the Institutional Review Board of The University of Texas at
Austin. All participants provided written informed consent and were monetarily compensated
for their time.

Stimulus

Natural exemplars (n = 40) of the four Mandarin tones (T1: high-flat; T2: low-rising; T3: low-
dipping; T4: high-falling) were generated by two native Mandarin speakers (originally from
Beijing; 1 female) in the context of five monosyllabic Mandarin Chinese words (/bu/, /di/,
/lu/, /ma/, and /mi/). (See spectrograms of sample stimuli in Figure S1A in the Supplementary
Materials. Supporting Information can be found online at https://www.mitpressjournals.org/doi
/suppl/10.1162/nol_a_00035). These syllables were chosen because they also exist in the
American English syllabic inventory. Therefore, the neural representations of native and non-
native speech categories could be examined for the learners and compared with the native
Mandarin speakers. The stimuli were normalized for a root mean square (RMS) amplitude of
70 dB and a duration of 442 ms (Perrachione et al., 2011). Both learners and native Mandarin
speakers heard the same set of stimuli during the experiments.

Intersubject neural representational
similarity (IS-NRS):
A neural measure that estimates
pattern similarities in neural
representational structure
between two subjects.

Predictive modeling:
A modeling process wherein an
algorithm is trained to model the
relationship between an outcome
and a set of predictor variables,
and validated with unseen data.
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Experimental Procedure

In the native tone-categorization fMRI experiment, Mandarin-speaking participants were re-
quired to categorize sounds into one of the four categories during scanning by pressing the
“1”, “2”, “3”, or “4” buttons using an in-scanner response box, with category-response mapping
counterbalanced across participants. Native participants were not provided feedback following
categorization responses. They briefly practiced categorization before scanning to establish
category-response mapping. To reduce the interference of scanner noise to speech perception,
we employed a customized sparse-sampling imaging sequence with an 800-ms silence gap be-
tween every two consecutive imaging acquisitions (Figure S1B). Each sound was presented (du-
ration = 442 ms) within the silence gap 100 ms after each imaging acquisition. Each sound was
presented once in each block, and the order of stimuli randomly varied across blocks. To better
estimate the hemodynamic responses for each trial, we added 20 null trials (i.e., silence, dura-
tion = 5 s) randomly between sound trials as jittered intertrial intervals in each block (i.e., scan
run). To accurately estimate the activation patterns of the sounds, native participants completed
at least five blocks of 40 trials each of tone categorization (six participants completed five blocks
(200 trials), and 27 completed six blocks (240 trials). Each sound (e.g., /bu4/; collapsed across
talkers) was repeated 10 to 12 times. The significant number of repetitions for the same item
ensures a sufficient signal-to-noise ratio and accurate activation estimation.

The non-native sound-to-category training procedure has been extensively described in
previous studies (Feng et al., 2019; Yi et al., 2016). Briefly, English-speaking participants per-
formed a tone categorization task during scanning, in which they were required to learn to
map the sounds onto four categories. The fMRI experiment consisted of six contiguous training
blocks of 40 trials each. In each block, each trial started with a fixation cross, and the auditory
stimulus was presented for 442 ms. Participants were required to make a categorization re-
sponse within 2 s. Following the stimulus presentation and categorization response, corrective
feedback (i.e., “RIGHT” or “WRONG”) was displayed for 750 ms (see Figure 1A). If the par-
ticipant did not respond within the 2 s, the response did not record and warning feedback was
presented (i.e., “TIME”). To effectively model brain signals for stimulus and feedback presen-
tation separately, we employed a jittered stimulus-feedback interval design (2–4 s; feedback-
stimulus interval = 1–3 s; pooled from a uniform distribution) (Birn et al., 2002; Dale, 1999; T.
T. Liu et al., 2001). Each sound stimulus was presented once within each block, with a total of
240 trials in the training experiment.

Imaging Acquisition

For the native tone-categorization experiment, all MRI data were acquired using a Siemens 3T
Magnetom Prisma MRI system with a 20-channel head coil at Imaging Center for Integrated
Body, Mind, and Culture Research, National Taiwan University. Functional images were ac-
quired using a T2*-weighted gradient echo-planar imaging (EPI) pulse sequence (repetition time
[TR] = 2,500 ms with 800–ms silence gap; echo time [TE] = 30 ms; flip angle = 90°; 31 slices;
field of view [FOV]= 224×224mm2; in-plane resolution = 3.5 × 3.5mm2; slice thickness = 3.5mm
with 1.1 mm gap; acceleration factor = 2). T1-weighted high-resolution structural images were
acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence
(192 slices; TR = 2.0 s; TE = 2.3 ms; flip angle = 8°; voxel size = 0.94 × 0.94 × 1 mm3).

For the sound-to-category training experiment, MRI data were acquired using a Siemens 3T
Magnetom Skyra MRI system with a 32-channel head coil at the Biomedical Imaging Center at
The University of Texas at Austin. Functional images were obtained using a gradient-echo
multi-band EPI pulse sequence (flip angle = 60°; TR = 1.8 s; TE = 30 ms; FOV = 250 ×
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250 mm2; in-plane resolution = 2 × 2 mm2; 36 axial slices; slice thickness = 2 mm; distance
factor = 50%) using GRAPPA with an acceleration factor of 2. Whole-brain T1-weighted struc-
tural images were obtained via MPRAGE sequence (176 slices; TR = 2.53 s; TE = 3.37 ms;
FOV = 250 × 250 mm2; 256 × 256 matrix; voxel size = 1 × 1 × 1 mm3; distance factor = 0%).

Behavioral Data Modeling

Estimation of learning outcome and speed

The learning outcome is defined as the average tone identification accuracy in the last three
blocks. There are three considerations for this learning outcome definition. First, at the group
level, learning performance in the last three blocks was relatively stable compared to the first
three blocks. That is, tone identification performance was not significantly improved within the
last three blocks ( p’s > 0.05), which suggests that the last three blocks may be a relatively stable
learning phase. Second, individual differences in learning outcomes are based on the fact that the
amount of training was the same across learners. Therefore, we selected the same number of train-
ing blocks for each learner. Third, the division of two training phases (i.e., the first and the last three
blocks) ensures that there are enough trials for the brain estimation of stimulus items for the

Figure 1. Behavioral tone-category training procedure, learning performance, and response-pattern modeling. (A) Feedback-based
sound-to-category training procedure was used during MRI scanning for the learners. The native Mandarin listeners performed the same tone
categorization task but without feedback (see Figure S1 for the experimental procedure). (B) Line graphs show the group-level and individual
learning curves across six training blocks. Early, the early phase of training; Late, the late phase. (C) Learning speed (LS) was estimated by fitting
each learner’s block-by-block accuracies with a power function. See Materials and Methods for the detailed learning curve modeling proce-
dure. (D) Six predefined representational dissimilarity matrices (RDMs) were constructed to model learners’ categorization response patterns
using the behavioral representational similarity analysis (bRSA): Native nRDM = native listeners’ neural RDM derived from a predefined brain
mask; CAT = binary tone-category RDM; MD = multidimensional pitch RDM; F0 height = pitch height RDM; F0 slope = pitch direction RDM;
Syllable = binary syllable-identity RDM; See Materials and Methods for the detailed RDM construction procedure. (E) The bRSA reveals that
native-similar tone-category-related information emerges following training, whereas task-unrelated segmental information decreases. Error
bar: SEM (Standard Error of the Mean). (F) The model fits of the native nRDM (also other tone-category-related RDMs) are highly correlated
with the learning outcome (red dots) and speed (not shown). In contrast, an inverse relationship was found between the Syllable model fits and
learning outcome (pink dots).
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multivariate analyses. Based on the above considerations, the last three blocks were defined as the
“late phase” of training, and the first three blocks were defined as the “early phase.” It is worth
noting that this training phase definition mainly refers to the amount of training that the learners
received instead of the proficiency level in a certain phase achieved by individual learners.

To model the non-native tone learners’ learning curves properly for the estimation of learn-
ing speed, we used four functions (i.e., hyperbolic, logarithmic, power, and linear regression
functions) to fit each subject’s block-by-block category identification accuracies, separately
(Figure 1B & Figure S2). The goodness of fit (GOF) of the curve modeling of each function
was first calculated by estimating the RMS error between a fitting line and the actual learning
curve for each learner. The resulting GOF of the three curvilinear functions was then compared
with that of the linear function at the group level to examine whether the curvilinear functions
were better in capturing the learning progress than the linear function. We found that only the

GOF of the power function (i.e., Y ¼ aXb; X = training block and Y = tone identification accu-
racy) was significantly better than the linear function (t(52) = −4.16, p < 0.001; lower is better in
curve fitting). Parameters a and b from the power function are both associated with the learning
progress. The parameter a represents the steepness of a learning curve, denoting the initial
learning gain based on the same amount of training or a “conversion factor” between the
amount of training and learning performance. The parameter b represents the changes in learn-
ing gain across different training blocks. Both parameters contribute to the construct of learning
speed (see individual fitting curves with the power function in Figure S2). Therefore, we com-
bined the two parameters by multiplying them to represent the learning speed (i.e., LS = a × b;
see Figure 1C). The learning speed was significantly correlated with the learning outcome (r =
0.91, p < 0.001) but it was not significantly correlated with the first block categorization per-
formance (r = 0.216, p = 0.120). The two learning measures (i.e., learning outcome and speed)
share 82% variances. That is, there are around 18% of nonoverlapped variances that are un-
ique to each learning measure. We hypothesize that these nonoverlapped variances may be
predicted by different neural sources. Therefore, we used both measures as learning success
indices for predictive modeling.

Categorization response-pattern modeling with behavioral representational similarity analysis

We estimated learners’ behavioral representational structure during training by using behav-
ioral representational similarity analysis (bRSA) to model their behavioral response confusion
patterns (Figure 1D, bottom panel). The bRSA reveals the model fits (i.e., Spearman’s correla-
tions) between predefined representational models (i.e., representational dissimilarity matrices
[RDMs]) and the response confusion matrices for each block. We created six RDMs to exam-
ine what type of dimensions/information emerges or changes following training. These RDMs
are 20-by-20 dissimilarity matrices with four tones and five syllables, including dissimilarities
between all pairs of tonal contrasts. The dissimilarities were calculated based on different
acoustic and non-acoustic information, including native neural activation patterns (Native
nRDM), binary tone-category labels (CAT), fundamental frequency (F0) height, F0 slope,
and syllable identity (see Figure 1D, upper panel).

The native nRDM was constructed based on the neural activation-pattern dissimilarities be-
tween each pair of sound items derived from the native Mandarin speakers within a predefined
speech/auditory perception-related brain mask (see Figure S3). This mask was generated from
a meta-analysis with Neurosynth (https://neurosynth.org/) by searching the topic dataset with
keywords “speech,” “auditory,” and “perception.” The dataset consists of 400 topics extracted
with linear discriminant analysis (LDA) from the abstracts of all articles in the Neurosynth da-
tabase as of July 2018. This automatic meta-analysis included 269 studies (Topic 180) with a
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list of highly related topic words, including “auditory,” “perception,” “speech,” “non-speech,”
“sound,” “processing,” and so on.

We used this independent brain mask to avoid any ROI-selection bias. This brain mask was
only used for creating native nRDM for bRSA. The purpose of including this native nRDMmodel
for the bRSA was to estimate to what extent the learners’ behavioral response patterns were sim-
ilar to the native neural representation patterns. The F0 height RDM was constructed by calcu-
lating the acoustic distance between each pair of sounds based on their mean F0 estimates. The
F0 slope RDM was constructed by calculating the distance between each pair of sounds based
on their F0 slopes (i.e., F0 height changes over time). For the multidimensional (MD) model,
we created a two-dimensional space with the F0 height and slope dimensions. The Euclid
distance between each sound pair within this two-dimensional space was computed and con-
verted into a distance matrix. Each dimension was normalized before calculating the distance.
(See Feng, Gan et al., 2018, for the detailed RDM construction procedure.) We then normal-
ized these RDMs by scaling between 0 (low dissimilarity, i.e., close in distance) and 1 (high
dissimilarity, i.e., far from each other in distance). The binary tone-category RDM was con-
structed based on combinations of the four category labels (i.e., 0 for the same category, 1 for
different categories). The syllable RDM was constructed based on the identity of the five syl-
lables (i.e., 0 for the same syllable, 1 for different syllables). These six RDMs were correlated
with learners’ response confusion matrices in a block-by-block manner. Learners’ response
confusion matrices were created based on their categorization responses. If two sounds had
an identical response, then this pair was coded as 0 in the confusion matrix; otherwise, it was
coded as 1. Using this procedure, we created two confusion matrices in each block (one for
each talker) for each learner. The two matrices were then averaged for each block. Finally, we
calculated the Spearman’s correlations (i.e., model fits) between each RDM and confusion
matrices. We also examined the relationships between the RDM model fits and learning out-
come and speed across subjects to see which RDM explains most of the interindividual var-
iance in learning success.

Neuroimaging Data Analysis

Preprocessing for multivariate pattern analyses

All MRI data were preprocessed using SPM12 (Wellcome Department of Imaging
Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm/). Briefly, functional images were
head-movement corrected by coregistering each image with the mean image. The high-
resolution structure image was coregistered to the mean functional image for each subject.
The normalization transformation parameters were then estimated using a segmentation-
normalization procedure with the coregistered structure image. The normalization parameters
were used to normalize the functional images to the Montreal Neurological Institute (MNI)
space for group-level statistical analyses. To model single-trial brain activation responses for
multivariate pattern analysis (MVPA), the realigned functional images in the native space were
fed into the subject-level generalized linear model (GLM) analysis with the least-squares single
approach (Mumford et al., 2012, 2014). Specifically, for the tone-category training dataset, a
design matrix was constructed with a regressor of interest for each trial during sound or feed-
back presentation; a regressor of noninterest consisted of other events (i.e., feedback or sound
presentation for the current trial, and stimulus and feedback presentations for the other trials),
six head movement regressors, and a session mean regressor for each training block individu-
ally. Therefore, 480 subject-level GLMmodels (240 models for sound presentation and another
240 models for feedback) were constructed and estimated for each subject for the training ex-
periment. Similarly, for the native tone-categorization experiment, 200 or 240 subject-level

Neurobiology of Language 287

Neural signatures of speech learning success

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/2/2/280/1925186/nol_a_00035.pdf by guest on 24 April 2024

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/


GLM models (for the sound presentation events) were constructed and estimated. The t statistic
brain maps were calculated for each trial and further used for MVPA (Misaki et al., 2010).

Multivariate Pattern Analyses

We calculated three types of MVPA measures for learning-success prediction, including
IS-NRS, model-based representational similarity analysis (RSA) measures, and neural feedback
sensitivity. The three types of measures were considered predictive features for predictive
modeling (see Figure S4A for the overview of the data processing pipeline).

IS-NRS analysis

We quantified the degree of nativeness in neural representational structure for the learners by
measuring the IS-NRS between each non-native learner and each of the native-Mandarin
speakers for each anatomical defined region (see Figure 2A for a graphical illustration of the
analysis procedure). Higher IS-NRS indicates greater similarity in the neural representations of
the speech sounds relative to the native listeners. The IS-NRS analysis is a derivative of the RSA
enabling us to evaluate similarity in neural representational structures (i.e., nRDMs) between
subjects within the same stimulus space instead of in the subjects’ voxel space (Kriegeskorte
et al., 2008; Kriegeskorte & Kievit, 2013). In the IS-NRS calculation pipeline, nRDMs were
first generated within each subject and compared between subjects from the two groups
(Figure 2A). Since both groups of participants heard the same sets of sounds, their neural
representations were comparable in the same space. This two-step dissimilarity-similarity
analysis approach can capture the similarity in representational structure between subjects
and datasets from different scanners, populations, imaging modalities, and even species
while ensuring that the representational similarity effect is not due to the differences between
datasets in these variables.

To calculate the IS-NRS, we extracted activation patterns from 94 regions of interest (ROIs) for
both the learners and the native listeners based on an anatomical-defined atlas, Anatomical
Automatic Labeling 2 (AAL2; Rolls et al., 2015). Cerebellum regions were removed because
the cerebellum was not entirely covered for some of the learners’ data. Since two groups of da-
tasets differ slightly in imaging parameters (e.g., number of voxels and voxel size) and there are
large interindividual differences in brain anatomy, the ROI-based approach ensures that the neu-
ral representational structures were compared in the same anatomical-defined areas between the
two groups of subjects. The AAL2 atlas in the MNI space was projected back to the native space
for each subject, and the activation patterns when listening to the stimuli were extracted for each
ROI (Figure 2A). Then, the nRDMs were calculated based on the activation patterns for each ROI
and subject (note that dimensionality reduction was additionally conducted before the nRDM
calculation to evaluate the representational dimensionality underlying successful learning; refer
to the Representational Dimensionality Evaluation section). Calculating nRDMs ensures that dif-
ferent subjects’ neural patterns were converted onto the same stimulus representational space. In
this space, the distance (i.e., dissimilarity) between each pair of sounds (or phonetic contrasts) can
be quantified based on their activation patterns and can be compared with other subjects or
model-based RDMs. For each ROI, we calculated the IS-NRS for each learner-native speaker pair
with Spearman’s ranking correlation based on two vectorized nRDMs. The variances of hand-
response RDM (left vs. right hand) were controlled for using the partial correlation approach
to rule out the potential confounding of hand-response pattern similarity between the two groups.
Therefore, each learner has 33 IS-NRSs (33 native listeners) for each ROI. These IS-NRSs were
then averaged for the same learner in each ROI. The resulting IS-NRS data (i.e., a learner-by-ROI
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matrix) were used as predictive features to train and validate prediction models for the prediction
of individual learners’ behavioral learning outcome and speed.

Representational dimensionality evaluation

To evaluate the representational dimensionality underlying successful learning (i.e., how many
dimensions underlying learners’ representational structure explain most individual differences
in learning success), we additionally used principal component analysis (PCA) with the single
vector decomposition algorithm to decompose learners’ sound-induced activation patterns in-
to principal components (PCs) before IS-NRS calculation. We used a different number of PCs
(maximal 20 PCs due to 20 sound items) to re-calculate the distance (i.e., Euclidean distance)
between each sound pair and to construct the nRDMs for the learners. The IS-NRSs were cal-
culated based on the dimension-constrained nRDM (see the procedure in Figure 5A and the
detailed processing pipeline in Figure S4). Finally, a subject-by-ROI-by-PC IS-NRS matrix was

Figure 2. Intersubject neural representational similarity (IS-NRS) analysis, predictive modeling procedure, and candidate representation
models for RSA and prediction analysis. (A) Graphical illustration of the calculation of IS-NRS. Neural activation patterns were extracted from
predefined ROIs based on the AAL2 atlas for both learners and native listeners. The neural RDMs (nRDMs) were calculated separately for each
group. Each learner’s nRDM was compared with every native listener’s nRDM for each ROI. The IS-NRSs were then generated and used as
predictive features to predict learning success (i.e., outcome and speed). (B) The 10-fold cross-validation (CV) procedure for model construc-
tion and validation. All learners were split into 10 folds where 90% of the learners’ data were used to train a GLM/SVR model and then the
trained model was used to predict the left-over 10% of the learners. This procedure was repeated 10 times. Predictive powers were estimated
by calculating correlations between the predicted and observed learning performance. Permutation and bootstrapping procedures were used
to determine the statistical significance and stability of the predictive powers. See Figure S4 for the overall data analysis pipeline. (C) Candidate
representational models for the generation of neural representational predictive features. To compare the predictive powers of IS-NRS (i.e.,
derived from the ROI-based native nRDM) with those of other model-based representational measures, the same prediction analyses were
conducted with the predictors derived from the other five RDMs (i.e., CAT, MD, F0 height, F0 slope, and Syl).
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obtained for the predictive modeling analysis. By using this dimension decomposition ap-
proach with predictive modeling, we can assess the dimensionality underlying individual
learning success and parametrically examine the relationship between representational di-
mensionality and individual differences in learning success.

Model-based RSA and searchlight approach

To compare the predictive power of the IS-NRS and other representational measures, we
calculated the representational similarities between learners’ nRDMs and five predefined
model-based RDMs. The five RDMs were derived based on the acoustic properties and pho-
netic category labels of the stimuli (i.e., CAT, MD, F0 height, F0 slope, and Syllable; see
Figure 2C). These model-based representational similarities were then entered into the predic-
tive modeling to estimate to what extent these representational measures could be predictors
of learning success. We further examined whether the predictive power of IS-NRS outperforms
these model-based RSA measures. Cross-validation with bootstrapping and permutation pro-
cedures was used to determine the statistical significance and stability of the predictive models
(see the next section for details).

We also conducted model-based RSA with the searchlight approach (Kriegeskorte et al.,
2006) for the five model RDMs to examine how the learners’ neural representations of the
stimuli-related information change following training. The same searchlight RSA was also
conducted for native speakers for comparison. This searchlight approach has been described
extensively in previous studies (Feng, Gan et al., 2018; Feng et al., 2019, 2021). We briefly
described the approach here. This searchlight RSA analysis was conducted across the whole
brain. In each searchlight sphere (radius = 3 voxels), an nRDM was generated and then
correlated with each of the five model RDMs with Spearman’s correlation. The correlation
value was then normalized with the Fisher z-Transformation. This z value was then mapped
back to the center voxel of the sphere. This RSA was conducted for each voxel to generate
representational maps for each learner. We conducted this searchlight RSA for the early and
late blocks separately. For the group-level analysis, the individual RSA maps in the learners’
native space were first normalized to standard MNI space and then fed to a one-sample t test
against chance.

Neural sensitivity to feedback valence

To examine the extent to which individual differences in neural sensitivity to corrective
feedback relates to learning success and learners’ nativeness in neural representations (i.e.,
IS-NRS), we estimated the ROI-based feedback-type classification accuracies and used them
as predictors to predict individual learning outcomes and speed as well as the IS-NRS. We
operationally defined neural sensitivity to feedback valence as the feedback-type classification
accuracy (correct vs. incorrect feedback) based on the single-trial brain activation patterns. In
each ROI, we used an LDA classifier (Chang & Lin, 2011) with a leave-one-block-out cross-
validation (CV) procedure to classify individual trials’ feedback types (correct or incorrect).
Missing trials (i.e., trials for which there was no response; 7.1% on average across non-native
learners) were removed before the classification analysis. We conducted the classification
analysis separately for the early and late phases of training. Two learners were removed from
the analysis because they achieved 100% accuracy in one of the last three blocks. The ratio of
correct and incorrect feedback trials was varied across learners and training phases. To avoid
this inherent imbalance, we used a balanced leave-one-block-out partition procedure. This
procedure randomly selected the same number of correct and incorrect feedback trials for
both training and testing so that each feedback type occurs equally often in the training

Cross-validation:
A model validation technique used
to evaluate the generalization
performance of a machine learning
model to an independent dataset.
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and testing chunks in the CV procedure. Higher classification accuracy indicates higher neural
sensitivity to feedback-valence. The ROI-based classification accuracies were used as predic-
tive features to predict learning outcomes and speed as well as the IS-NRS. If the predictive
power is significantly higher than chance, the neural feedback sensitivity plays a critical role
in learning success and the emergence of native-similar neural representations.

Predictive Modeling Analysis

To determine whether the neural measures significantly predict learning outcomes and speed
as well as the nativeness of the emerging neural representations, we used multiple linear
regression and linear support vector regression (SVR) as prediction algorithms in combination
with a 10-fold CV procedure to train and validate prediction models. The neural measures
(i.e., IS-NRS, five model-based representational measures, and neural feedback sensitivity
index) obtained from all ROIs were used as predictive features, separately. Neural measures
from all subjects were combined into an S-by-F matrix where S is the number of subjects, and
F is the number of features (i.e., ROI).

We used a nested 10-fold CV procedure for feature selection, dimension reduction, model
construction, and estimation (see Figure 2B and Figure S4B for graphical illustrations). This CV
procedure avoids obtaining overfit models with a large number of noisy features and ensures
testing the models with unseen data points (Feng, Ingvalson et al., 2018). The nested CV pro-
cedure consisted of two levels of nesting (inner and outer) for feature selection, dimension
reduction, and model validation. At the inner level, we employed the linear Pearson correla-
tion analysis to remove irrelevant features based on the training sets (Pereira et al., 2009;
Smialowski et al., 2010), where only features (e.g., IS-NRS in the superior temporal gyrus
[STG]) showing significant correlations with learning outcomes or speed were selected. To
avoid selecting features that were related to learners’ first block tone categorization perfor-
mance instead of speech category learning success (i.e., speed and outcome), we controlled
for the interindividual variance of the categorization accuracy in the first block in the feature
selection step. Therefore, the predictive powers of the models reflect how well those selected
ROIs predict learners’ learning efficacy.

Different feature selection thresholds (i.e., p = 0.01 and 10% of total features) were tested
to assess the consistency and stability of the predictive performance. To further reduce the
dimensionality of the predictors, we conducted the PCA for the selected features and selected
the relevant PCs (p < 0.05) for further model training. The feature selection and dimension
reduction procedures were conducted only on the training set, which was independent of
the outer-level model testing (Figure 2B). That is, 90% (i.e., 9-fold) of the data were used for
feature selection, dimension reduction, and model training while the hold-out 10% were for
testing, repeating 10 times (i.e., 10-fold CV). The linear SVR algorithm with default parameters
(i.e., C = 1, Gamma = 1/number of features) was also used to access the multivariate predictive
power of the predictors. We used functions from the MATLAB package LIBSVM (Chang &
Lin, 2011) in combination with in-house scripts to conduct the predictive modeling analysis.
We examined the predictive power of a given neural measure by calculating the Pearson’s
correlation between the predicted and observed scores (rval[predicted,observed]). The predictive
modeling analysis was conducted separately for the early and late phases of training.

The statistical significance of the prediction was evaluated using a non-parametric permu-
tation procedure. To test whether the predictive power of each model occurred by chance, we
used a non-parametric permutation procedure to generate a null distribution of the predictive
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power by fully shuffling the predictive features and learning performance across learners for
each CV. Note that each feature and learning performance was permuted independently to
generate a fully randomized data matrix, and the 10-fold CV procedure was conducted based
on the randomized dataset. This data randomization and CV procedure were repeated 10,000
times, and the 95th percentile points of each distribution were used as the critical values for a
one-tailed t test against the null hypothesis with p = 0.05. To test the stability of the prediction,
we used a bootstrapping procedure by randomly dividing all the learners into ten folds and
conducted the 10-fold CV. Each CV prediction would be slightly different because the com-
position of the training and testing subjects were different for each iteration. We repeated this
bootstrapping procedure 10,000 times. We identified the most contributing regions by com-
paring each region’s correlation values derived from the feature selection procedure with its
corresponding permutation-based correlation distribution. These regional permutation-based
p values were corrected with the false discovery rate (FDR) approach.

RESULTS

Behavioral Results

Tone categorization performance for the native Mandarin speakers was close to ceiling (accu-
racy = 97.3 ± 2.66 % [mean ± SD], reaction time [RT] = 927.98 ± 109.26 ms). In the tone-
category training fMRI experiment, English-speaking participants learned to categorize
Mandarin tones significantly above chance following training (first block: the mean accuracy
across the participants was 22%, range = 0–45%, SD = 9%; chance level = 25%; first block vs.
chance: t(52) = −2.38, p = 0.021; the final block: the mean accuracy was 47%, range =
13–100%, SD = 26%; final block vs. chance: t(52) = 6.27, p < 0.001; see Figure 1B for the
group and individual learning curves). The category identification accuracy significantly in-
creased over blocks (the first vs. final block paired t test: t(52) = 7.69, p < 0.001). Similarly,
the mean accuracy of the late phase of training (i.e., the last three blocks) was significantly
higher than in the early phase (t(52) = 6.41, p < 0.001).

The learning outcome was operationally defined as the mean accuracy in the late training
phase. Learning speed was operationally defined as the model fitting parameters for individ-
uals’ learning curves with a power function (Figure 1C). Learning speed was not significantly
correlated with the accuracy in the first block (r = 0.216, p = 0.12) whereas learning outcome
was significantly correlated with the accuracy in the first block (r = 0.45, p < 0.001). These
results demonstrate that compared to the outcome, learning speed may be more related to
learners’ sound-to-category learning gains instead of the first block accuracy. Because the
learning speed and outcome are two target indices reflecting learning efficacy, we used both
for the predictive modeling analyses while controlling for the interindividual variance of block
1 accuracy.

The bRSA (see Figure 1D for graphical analysis procedure) showed that RSA model fits
significantly increased over blocks for the native nRDM (repeated measures ANOVA; main
effect of block: F(5, 260) = 10.42, p < 0.001) and other category-related RDMs, including
CAT (F(5, 260) = 20.24, p < 0.001), MD (F(5, 260) = 12.78, p < 0.001), F0 height (F(5, 260) =
13.43, p < 0.001), and F0 slope (F(5, 260) = 5.94, p < 0.001). However, the RSA model fits of
the Syllable RDM decreased over blocks (F(5, 260) = 9.24, p < 0.001; Figure 1E). Moreover,
individual differences of the model fits were significantly correlated with the individual differ-
ences of learning outcome (Native nRDM: r = 0.91; CAT: r = 0.95; F0 height: r = 0.81; F0 slope:
r = 0.83; MD: r = 0.89; Syllable: r = −0.73; p’s < 0.001; see Figure 1F for a representative scatter
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plot) and speed (Native nRDM: r = 0.80; CAT: r = 0.85; F0 height: r = 0.72; F0 slope: r = 0.74;
MD: r = 0.78; Syllable: r = −0.61; p’s < 0.001). These modeling results indicated that
native-similar categorization response patterns emerged for the learners following training.
The response patterns were highly related to the individual differences in pitch encoding
and learning success.

The Degree of Nativeness in Neural Representational Structure Predicts Learning Success

We employed IS-NRS analysis to measure the degree of nativeness in neural representational
structure (i.e., IS-NRS) for individual learners, as compared to a group of native Mandarin-
speaking listeners (see Figure 2 for the IS-NRS calculation procedure). Significant similarities
with native listeners in neural representational structure emerged at the late phase of training in
the bilateral STG and right precentral gyrus (R.PreCG) (Figure 4B). Similar to the emerging
native-similar neural representations, the learner’s neural representations of tone categories
and pitch-related information emerged in the late phase of training, demonstrated using the
searchlight-based RSA with predefined category and pitch-related RDMs (CAT, MD, F0
height, and slope RDMs; see Figure S5; also see Figure S6 for IS-NRS comparisons between
learners and native speakers).

Comparing the whole-brain searchlight model-based RSA brain maps between the native
listeners and the learners for the tone-category-related RDMs, we found that the searchlight
RSA patterns of the learners in the late phase were approaching the patterns of the native
listeners, although the RSA correlations were less robust in extent and yielded lower inten-
sity. In contrast, the syllable-related information was less and less represented in the brain
following training (Figure S5). Altogether, these results indicate an increase in the learners’
neural representations of learning- or task-relevant tone-category-related information, but a
decrease in their representations of learning- or task-irrelevant segmental units (e.g., conso-
nants and vowels).

We used IS-NRS as an indicator of learners’ nativeness in neural representations of speech
sounds. The ROI-based IS-NRS and other model RSA measures were used as candidate pre-
dictive features for learning-success prediction analyses (see Figure S4 for the analysis pipe-
line). We used CV and non-parametric permutation procedures with 10,000 iterations to
determine the statistical significance of each predictive model (see Figure 2B for the CV pro-
cedure). We also employed the bootstrapping procedure to evaluate the reliability of the
prediction models. We found that the IS-NRS in the late phase of training was significantly
predictive of learning outcome (permutation test: p = 0.004) and speed (permutation test:
p = 0.006; see Figure 3A and Figure 3B for the predictive powers), whereas the predictive
powers were at chance levels for both outcome (p = 0.582) and speed (p = 0.915) predictions
in the early phase (blue-color distributions in Figure 3B).

We conducted additional prediction analyses with fine-tune distinction between different
blocks of training. To increase the signal-to-noise ratios of the activation estimation for in-
dividual stimulus items, we combined data from two consecutive blocks. Therefore, the
whole training session was divided into five parts (i.e., blocks 1–2, 2–3, 3–4, 4–5, and
5–6). We recalculated the IS-NRSs for these blocks and reconducted the learning-outcome
and -speed prediction analyses. The results are shown in Figure S7. We found that prediction
powers increased as a function of training blocks. Only the IS-NRSs at the last three blocks
(i.e., blocks 4–5 and blocks 5–6) were predictive of learning success. These additional results
were consistent with the above prediction results showing that the IS-NRSs at the initial phase
of training were not predictive of the learning speed and outcome. Altogether, these results
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demonstrate that the degree of nativeness of the neural representational structure in the late
training sessions is tightly related to individual differences in learning efficacy.

To further compare the predictive power of IS-NRS with other model-based representational
measures, we conducted the same predictive modeling with other model-based RSA measures
as predictors. Four tone-category-related RDMs (i.e., CAT, MD, F0 height, and F0 slope) and
one segmental-unit-related RDM (i.e., Syllable) were used to generate RSA representational
measures for all ROIs (Figure S4A). With the predictive modeling, we found that the IS-NRS
yielded the highest predictive power (median r[predicted,observed] = 0.510, p = 0.004 for outcome
prediction; median r[predicted,observed] = 0.412, p = 0.006 for speed prediction). Three of the
tone-category-related RDMs also yielded predictive powers significantly better than chance
(CAT: outcome prediction: r[predicted,observed] = 0.430, p = 0.013, SD = 0.097; speed prediction:
r[predicted,observed] = 0.416, p = 0.012, SD = 0.077; MD: outcome prediction: r[predicted,observed] =
0.379, p = 0.014, SD = 0.082; speed prediction: r[predicted,observed] = 0.391, p = 0.013, SD =
0.074; F0 height: outcome prediction: r[predicted,observed] = 0.304, p = 0.025, SD = 0.072; speed
prediction: r[predicted,observed] = 0.353, p = 0.017, SD = 0.083). However, the F0 slope and

Figure 3. Predictive powers of the IS-NRS and other five model-based representational predictors. (A) Predictive powers were estimated
based on the linear correlations between the predicted and observed learning scores. A representative scatter plot with linear fits showed
strong predictive power in the late training phase instead of the early. (B) IS-NRS predictive power distributions for the outcome and speed
predictions for the early and late phases of training, respectively. Bootstrapping-based distributions were compared with the permutation-based
(i.e., Perm) distributions to determine the statistical significance of the prediction models. Models only in the late phase revealed significant
effects for both outcome and speed predictions. (C) The IS-NRS showed more predictive power and prediction stability compared with the
other five representational predictors. The dashed line indicates the 95th percentile of a permutation-based distribution. Representational pre-
dictors: NRS, native listeners’ regional neural model (i.e., IS-NRS); CAT, tone-category model; MD, multidimensional pitch model; FH, F0
height; FS, F0 slope; Syl, syllable-identity model; permutation-based significance test: **, p < 0.01; *, p < 0.05; n.s., nonsignificant.
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Syllable models did not show significant better-than-chance predictive powers (F0 slope:
outcome prediction: r[predicted,observed] = 0.036, p = 0.388, SD = 0.119; speed prediction:
r[predicted,observed] = 0.083, p = 0.273, SD = 0.118; Syl: outcome prediction: r[predicted,observed] =
−0.053, p = 0.649, SD = 0.120; speed prediction: r[predicted,observed] = 0.151, p = 0.182, SD =
0.118).

To further confirm that the predictive power of the IS-NRS was not due to sharing the same
segmental information (i.e., consonants and vowels) between learners and native listeners, we
recalculated the IS-NRS while additionally controlling for the Syl model. We confirmed that
the resulting predictive power remained significant (outcome prediction: r[predicted,observed] =
0.510, p = 0.003; speed prediction: r[predicted,observed] = 0.403, p = 0.008). We also examined
to what extent the predictive power of the IS-NRS was due to the joint variances of F0 height
and slope representations by controlling for the variance of the two RDMs. We found that the
predictive power of the IS-NRS was diminished (outcome prediction: r[predicted,observed] =
−0.056, p = 0.669; speed prediction: r[predicted,observed] = −0.081, p = 0.732) when controlled
for the variances of both RDMs. These results indicate that the representational models derived
from native listeners’ neural patterns and the resulting IS-NRSs outperform other representa-
tional measures in differentiating successful from less successful learners.

To examine whether the ROIs with positive or negative correlation patterns contributed equally
to the predictive performance, we reran the predictive modeling with two feature selection pro-
cedures to disentangle the effects of the two types of ROIs. In one feature selection procedure, we
only selected ROIs that showed positive correlations between the IS-NRS and learning perfor-
mance in the training sets to build predictive models, while in another feature selection proce-
dure, we only selected the ROIs with negative correlations. We found that those models with only
positive-correlation ROIs were able to significantly predict learning success while the predictive

Figure 4. The brain regions that significantly contributed to the predictive models and regions that showed significantly emerging
native-similar neural representations. (A) Regions significantly contributing to learning outcome and speed predictions in the late phase of
training. Permutation-based FDR-corrected q = 0.05. (B) Brain regions that showed emerging native-similar neural representations in the late
phase of training. FDR-corrected q = 0.05. ROI abbreviations: L.IFGtri, triangular part of left inferior frontal gyrus; L.IPL, left inferior parietal
lobe; L.MTG, left middle temporal gyrus; STG, superior temporal gyrus; SMG, supramarginal gyrus; R.AG, right angular gyrus; R.PreCG, right
precentral gyrus; L, left hemisphere; R, right hemisphere.
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powers with negative-correlation ROIs were at chance. These results indicate that more native-
similar neural representations for the learners are associated with higher learning efficacy.

To identify brain regions that significantly contributed to the prediction models with IS-
NRS, we estimated the statistical significance of each region using a non-parametric
permutation-based approach. In the predictive modeling, we generated a bootstrapping-based
correlation distribution and a permutation-based null distribution (10,000 iterations) for each
region based on the training sets (i.e., 90% of randomly selected learners, n = 48). The median
of the bootstrapping distribution for a given region was compared with the 95th percentile of its
corresponding null distribution to determine statistical significance. Multiple comparison
correction was conducted based on the FDR approach. We found that a speech-related
brain network, including the triangular part of left inferior frontal gyrus (L.IFGtri), left in-
ferior parietal lobule (L.IPL), left supramarginal gyrus (L.SMG), bilateral STG, left middle tem-
poral gyrus (L.MTG), right angular gyrus (R.AG), and R.PreCG showed significant
contribution to the speed-prediction modeling in the late phase (Figure 4A, right panel).
Similarly, L.IFGtri, L.STG, and R.PreCG contributed significantly to the outcome prediction
(Figure 4A, left panel).

Additional searchlight IS-NRS analyses within the bilateral STG were conducted to identify
which STG subregions contributed to individual differences in learning success. The IS-NRSs
were significantly correlated with learning outcomes primarily in the middle and anterior
portions of the STG (see Figure S8). Taken together, these results indicate that learners with
greater IS-NRS (i.e., more nativeness in neural representations) in the fronto-temporoparietal
speech perception network are more successful in learning to categorize novel speech
categories.

To further examine whether individual differences in the neural representations at the initial
phase of training relate to the individual differences in the neural representations at the late
phase, we conducted additional prediction analyses with six neural representational measures
(i.e., IS-NRS [native-similar representations], CAT [tone category representations], F0 height
[pitch height representations], F0 slope [pitch direction representations], MD [multidimensional
pitch representations], and Syl [syllable representations]) as predictive features derived from the
first two blocks to predict these representational measures at the last two blocks. To increase
the signal-to-noise ratio of the nRDMs, we combined the data from blocks 1 and 2 as well as
blocks 5 and 6, respectively. Across the whole brain (94 ROIs), we did not find any region
showing a significant prediction effect after correction (i.e., FDR q = 0.05). This finding sug-
gests that the initial neural representations may change significantly following training, with
successful learners’ representations having native-similarity relative to less successful learners.

Multidimensionality in Learners’ Neural Representations Contributes to the Learning Success

To further reveal the nature of the dimensionality of the emerging native-similar neural repre-
sentational structure underlying successful learning, we used PCA with the singular value
decomposition algorithm to decompose learners’ brain activation patterns of the stimuli into
independent PCs and recalculated the IS-NRS with PC-constrained nRDM for predictive
modeling (see Figure 5A for graphical analysis procedure). This procedure allows us to assess
how many dimensions of the learners’ representations underlie individual differences in learn-
ing success. We found that dimensionality significantly modulated the predictive powers for
both learning-speed and -outcome predictions. Predictive power increased as the dimen-
sionality increased. Importantly, predictive powers reached a plateau with approximately

Neurobiology of Language 296

Neural signatures of speech learning success

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/2/2/280/1925186/nol_a_00035.pdf by guest on 24 April 2024

https://doi.org/10.1162/nol_a_00035


five PCs (speed prediction: median r = 0.52, p = 0.001; outcome prediction: r = 0.42, p =
0.005; 1PC’s vs. 5PCs’ predictive power: p’s < 0.001; Figure 5B).

We also conducted the same prediction analysis with PCA for six predefined speech-
perception-related regions and found that the number of PCs for the maximum predictive
powers were varied across regions (ranging from two to nine PCs; see Figure S9). A more
straightforward demonstration is shown in Figure 5C. We extracted the IS-NRSs (controlled
for both hand-response and Syllable RDMs) from the significant contributing regions (i.e.,
L.IFGtri, L.STG, and R.PreCG) and compared the IS-NRSs between the successful and less-
successful learners across different numbers of PCs. Two groups of learners were created
based on the median split of the learning outcome (successful: n = 26, M = 65.0%; less suc-
cessful: n = 25, M = 24.4%; two of them in the median line were removed). We found that
successful learners showed greater IS-NRS than less successful learners (group-by-dimensionality
ANOVA; main effect of the group: F(1, 49) = 16.33, p < 0.001) but only in the late phase;
while the group differences significantly increased in the dimensionality, and group differ-
ence effect reached the maximum at 5–6 PCs, which was evidenced by a significant
group-by-dimensionality interaction effect (F(5, 245) = 4.84, p < 0.001). These results indi-
cate that successful learners use a multidimensional but also cost-efficient neural

Figure 5. Moderate-to-high dimensionality of learners’ native-similar neural representations best predicts individual learning success. (A) The
IS-NRS was recalculated with a dimensional decomposition procedure in which learners’ activation patterns were decomposed into principal
components (PCs). We constructed learners’ nRDMs with different numbers of PCs (from 1 to p, p = number of PCs). The non-native learners’
dimension-constrained nRDMs were then correlated with native nRDM individually to calculate IS-NRS. These IS-NRSs deriving from different
numbers of PCs were then used to predict learning success. (B) Predictive power reached a plateau with around five PCs (the black arrow).
Predictive powers increased as a nonlinear function of dimensionality. ** p < 0.01. (C) Group differences in IS-NRS across training phases.
Learners were split into two groups, successful and less successful, based on the median of their outcomes. In the late phase of training,
successful learners show more robust native-similar neural representations (i.e., IS-NRS) compared to less successful learners. This group dif-
ference was more salient in the moderate-to-high dimensional space than that in the low-dimensional space.
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representational mechanism (i.e., a moderate number of dimensions) to encode the newly-
acquired speech categories.

Neural Sensitivity to Feedback-Valence in the Frontostriatal System Contributes to Individual

Differences in Learning Success and in the Nativeness of Neural Representations

To evaluate the extent to which the neural sensitivity to feedback valence is a driving factor
of the behavioral learning success (i.e., outcome and speed) and the degree of nativeness of
neural representational structure (i.e., IS-NRS), we used the multivariate feedback-type clas-
sification accuracy as a neural feedback-sensitivity index to predict the learning perfor-
mance and IS-NRS. Higher feedback-type classification accuracy indicates more sensitivity
to feedback valance (i.e., more robust feedback-valance representations) in the brain. At the
group level, with a CV procedure strictly balancing the number of correct and incorrect
feedback trials, we found that widespread brain regions showed significantly above-chance
classification accuracy for both early and late phases of training (Figure 6A), including cor-
tical and sub-cortical striatal areas. Note that, quantitatively, the classification accuracies in
the late phase were slightly higher than in the early phase, especially in the frontostriatal
regions.

The most significant feedback-sensitive regions across training phases were within the fron-
tostriatal network, which is consistent with previous findings derived by univariate activation
analysis that used contrasts of correct vs. incorrect feedback (Feng et al., 2019; Yi et al., 2016).
Importantly, the neural feedback sensitivity in the late phase significantly predicted learners’
behavioral learning outcome (median r[predicted,observed] = 0.54, p = 0.003; permutation test)
and speed (median r[predicted,observed] = 0.60, p = 0.002) (Figure 6B). In contrast, the predictions
with feedback classification accuracies in the early phase were not significantly better than
chance (p’s > 0.05). Furthermore, the neural feedback sensitivity in the late phase significantly
predicted the IS-NRSs (median r[predicted,observed] = 0.40, p = 0.011) of the L.IFGtri, bilateral
STG, and R.PreCG (IS-NRSs collapsed across these regions; see Figure 6B), where these

Figure 6. Neural sensitivity to feedback valence predicts individual learning success and the degree of nativeness in neural representational
structure in the late phase of training. (A) Feedback-valence sensitivity brain maps for both early and late phases of training. Feedback-valence
sensitivity was measured by the ROI-based multivariate feedback-type classification analysis. The group-level classification maps were thresh-
olded at FDR-corrected q = 0.05. (B) Violin graphs show the prediction distributions of predicting speed and outcome as well as the IS-NRS of
L.IFGtri, bilateral STG, and R.PreCG. Neural feedback sensitivity in the late phase significantly predicted behavioral learning success and the
robustness of learners’ native-similar neural representations (i.e., IS-NRS). The dashed line indicates the 95th percentile of a permutation-based
distribution. (C) Corticostriatal regions significantly contributed to the learning-outcome prediction (see Figure S10 for those significantly con-
tributing regions to learning-speed and IS-NRS predictions). The color bar indicates the significance (vs. permutation distributions) of the ROIs
in correlating the neural feedback sensitivity with the learning outcome, derived from the feature selection and permutation procedures.
Permutation-based FDR-corrected q = 0.05. ROI abbreviations: Hipp, hippocampus; L, left hemisphere; R, right hemisphere.

Neurobiology of Language 298

Neural signatures of speech learning success

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/2/2/280/1925186/nol_a_00035.pdf by guest on 24 April 2024

https://doi.org/10.1162/nol_a_00035


regions showed significant predictive powers of learning success as well as the emergent
native-similar neural representations in the late phase relative to the early phase.

The feedback-sensitive regions that significantly contribute to the learning predictions
were identified in the frontostriatal network (Figure 6C, outcome prediction regions; also
see Figure S10 for regions significantly contributing to the speed and IS-NRS predictions),
which indicates that the neural sensitivity of feedback valence at the late phase of training
within this network is a neuromarker of tone-category learning success. The most contributing
regions in predicting the IS-NRSs were also within the frontostriatal network, including the
L.IFGtri, left caudate, right AG, right IFGorb, right middle frontal gyrus, and right posterior
cingulate cortex (permutation-based FDR-corrected q < 0.05). These results demonstrate that
the frontostriatal network plays an important role in facilitating the formation of native-similar
neural representations.

DISCUSSION

We employed a novel IS-NRS analysis and rigorous predictive modeling approach to examine
the neural underpinnings of individual differences in non-native speech category learning
success. We demonstrate that native-similar neural representational structure emerges during
training, and that the degree of nativeness of the neural representations in the left IFG, left STG,
and right PreCG is robustly predictive of behavioral learning success. The emerging native-
similar neural representations in successful learners are multidimensional and economical
in encoding pitch-related phonetic/phonological category information. Further, individual
differences in neural sensitivity to feedback valence within the frontostriatal network are highly
predictive of individual differences in learning success and of the degree of nativeness of the
emerging representations. These findings provide new insights into the neural representational
mechanism underlying successful non-native speech category learning and the role of feed-
back in mediating individual differences in learning success.

The Nativeness in Neural Representational Structure Predicts Sound-to-Category Learning Success

It has been previously demonstrated that task-general and acoustic-invariant neural represen-
tations of Mandarin tone categories for native listeners are evidenced in the superior temporal
areas and IPL using multivariate pattern classification (Feng, Gan et al., 2018; Feng et al.,
2021). While this classification approach reveals category-level representations, this analytic
method cannot capture the fine representational structures underlying the neural activation
patterns. Here we used native listeners’ nRDMS as a native representation model to estimate
learners’ neural representational structure and assess the extent to which native-similar rep-
resentations emerged during learning at the group level and in relation to individual differ-
ences in learning success. At the group level, the native-similar neural representational
structure emerged in the late phase of training, similar to the emerging neural representations
of tone categories and multidimensional pitch information (see Figure S5), which suggests
that for adult learners, feedback-based training protocol could not only facilitate the forma-
tion of task-relevant categorical representations (Chandrasekaran, Koslov, & Maddox 2014;
Feng et al., 2019) but also result in representational structures that were increasingly similar to
native listeners within just hundreds of training trials. This finding is consistent with the previous
observation that neural representations of tone category emerge following training (Feng et al.,
2019), and further reveals the native-similar nature of the representational structure underlying
successful sound-to-category acquisition.
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In addition to the emerging native-similar representations, a key finding is that greater
neural similarity in representational structure between learners and native listeners (i.e., IS-NRS)
predicts better learning performance. This finding suggests that IS-NRS is a robust neural rep-
resentational indicator of sound-to-category learning success. The prediction results are vali-
dated by the rigorous predictive modeling approach with CV, bootstrapping, and permutation
procedures, and are not explained by the contextual factors, response similarity, or individual
differences in tone identification performance in the first block of training. The left IFG, STG,
and right PreCG are crucial brain regions that reliably contributed to the learning-success
prediction. These findings demonstrate that more successful learners reveal greater similarity
to native listeners in their neural representations of Mandarin tone categories, even though the
mechanisms underlying how the category representations are acquired may be fundamentally
different (e.g., unsupervised vs. feedback-based learning) (Hernandez et al., 2005; Lim et al.,
2019; MacWhinney, 1998).

The native listeners’ neural representational dissimilarity structure serves as an excellent
tone-contrast model to quantitatively evaluate the degree of nativeness of neural representa-
tional patterns for the learners. The native listeners’ dissimilarity structure is also better at dif-
ferentiating successful from less successful learners compared to other representational models
(i.e., CAT, MD, etc.). The IS-NRS prediction model yielded the best prediction powers for how
fast and how well learning could be achieved among other predefined pitch-related category
models, reflecting the predictive accuracy as well as the reliability of the predictive models
revealed by the bootstrapping procedure (Figure 3C). Previous studies have documented sev-
eral neural indicators of speech learning success (Deng et al., 2016; Golestani & Zatorre,
2009; R. Liu & Holt, 2011; Myers & Swan, 2012; Sheppard et al., 2012; Wong & Ettlinger,
2011; Wong et al., 2007; Wong et al., 2011; Zhang et al., 2009). However, these studies have
largely focused on pre-training neural measures to predict learning outcomes or on examining
the group-level neural changes in response to training. Here, we categorically focus on the
neural representational dynamics during the process of learning and on how neural plasticity
contributes to individual differences in learning. Our results provide key insights into how
successful learners form multidimensional and economical representations as a function of
training with a goal of more efficient categorization.

The Dimensionality of the Emerging Native-Similar Neural Representational Patterns

Theoretical models in L2 acquisition, largely in the domains of grammar and syntax, posit that
the representational structure in L2 learners may be shallow and inefficient (Clahsen & Felser,
2006a, 2018). However, in terms of non-native speech category learning, our results demon-
strate that the emerging neural representations of newly acquired speech categories for success-
ful learners are not only significantly similar to those of native listeners but also multidimensional
and cost-efficient, where the speech categories are encoded in a neural representational space
with a moderate number of dimensions. Mathematically, a high-dimensional representational
space provides flexibility in encoding different categories but may come with a greater cost in
terms of neural resources. In contrast, a low-dimensional space expends fewer resources but
may not be capable of robustly differentiating behaviorally relevant categories. An optimal
learning-induced representational mechanism would need to balance these two competing
factors—maximizing behaviorally relevant information in the signal with minimal resources to
encode information (Gervain & Geffen, 2019; Tang et al., 2019).

Using the single vector decomposition approach, we decomposed the neural patterns of
speech sounds into independent dimensions and reconstructed the representational spaces
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parametrically with different numbers of dimensions to assess the relationship between di-
mensionality and predictive power as well as to estimate how many dimensions are needed
to differentiate successful learners from less successful learners. Our results showed that
predictive powers changed as a nonlinear function of dimensionality, which reflects an in-
teraction between learning success and dimensionality. Successful learners’ neural repre-
sentations showed increasingly native similarity as the number of dimensions increased,
whereas less successful learners did not show such a relationship. Importantly, learning-
success predictions did not increase linearly with the number of dimensions increase
(i.e., close to plateau at around five dimensions). This result suggests that the emerging neural
representations in successful learners are cost-efficient, in which activation patterns encode
the new categories with a limited number of dimensions that can maximally differentiate
them, similar to native listeners (Gandour, 1983; Gandour & Harshman, 1978). Using other
representational models’ RSA measures as predictors, we further demonstrate that multidi-
mensional pitch information is a critical constituent of the emerging native-similar neural rep-
resentations for successful learners. Consistent with previous findings in native listeners
(Chandrasekaran, Gandour, & Krishnan, 2007; Gandour & Harshman, 1978), we posit that
pitch height and direction (i.e., contour) are important category-defining components that rep-
resent tone-category distinctions in successful learners. Although prior behavioral studies have
shown that other dimensions may also differentiate tones (Gandour & Harshman, 1978), we
found that when we controlled for the variance of both F0 height and slope, the prediction was
diminished. These results suggest that pitch height and direction are two critical components
underlying both the native listeners’ and successful learners’ neural representations, in line
with our original hypothesis.

The brain areas that significantly contributed to the learning-success prediction are within a
large speech-related network involved in encoding pitch information for both native listeners
and successful learners. These include the left IFG, left IPL, bilateral STG, left SMG, left MTG,
right AG, and PreCG. Intriguingly, these brain areas encode the two pitch components differ-
ently for learners at the group-level. The bilateral STG, PostCG, PreCG, and the left IFG are
dominated by F0 height, whereas many fewer regions are dominated by representing F0 slope
(see Figure S5). However, for native listeners, the above regions encode the multidimensional
pitch information of the categorical representation. It is important to note that sound-to-
category training only involved 240 trials. The mean accuracy for even the successful learners
(n = 26) in the last training block (M = 70%) is therefore far from perfect, compared to the native
speakers (M = 97%). Therefore, the greater dominance of pitch height in learners relative to
native listeners may be because the learners are still novices. In line with a recent study dem-
onstrating changes at early auditory processing stages with extensive multi-day sound-to-
category training (Reetzke et al., 2018), we posit that a more extended training phase may yield
better neural alignment of dimensional structure between native listeners and successful
learners.

Neural Sensitivity to Feedback Valence Drives Learning Success and the Emergence of Native-Similar

Neural Representations

Our results demonstrate the significant similarity between native listeners and successful non-
native learners in how tone-category-related information is represented in the brain. It is im-
portant to note that this significant neural similarity emerges following a relatively short period
of sound-to-category training, which fundamentally differs from the mechanisms underlying
category acquisition during infancy. Acquiring speech categories in adulthood is argued to
require greater supervision, and recent models (e.g., the dual learning systems model) have
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highlighted the role of multiple corticostriatal systems in mediating adult speech learning
(Chandrasekaran, Koslov, & Maddox, 2014; Chandrasekaran, Yi, & Maddox, 2014; Maddox
& Chandrasekaran, 2014). Here, we provide supporting evidence from the perspective of in-
dividual differences in learning success that the neural sensitivity to feedback valence in the
frontostriatal system is highly predictive of both behavioral learning success and the emerging
native-similar neural representations. We posit that learners are reliant on feedback processing
to update the internal representation, which could guide the formation of correct sound-to-
category representations and efficient categorization behaviors.

Individual differences in feedback processing and sensitivity are presumably critical factors
associated with individual differences in learning outcomes. A previous study has identified
the putamen, a core region in the striatum, dynamically coupling with the representational
areas in the left STG when learners are processing corrective feedbacks (Feng et al., 2019).
In expanding this finding with a novel prediction analytic method, we found that individual
differences in neural feedback sensitivity in a more extended cortico-striatal network, includ-
ing the striatum as well as lateral and medial frontal, precentral gyrus, inferior parietal cortex,
and hippocampus areas robustly contributed to the prediction of learning success and the de-
gree of native-similar representations. These findings suggest that feedback sensitivities in the
two putative category learning systems (i.e., reflective and reflexive systems) are critical neural
sources mediating individual differences in speech category learning success, at least during
the transition learning stage (from novice to experienced phase).

The neural sensitivity to feedback valence is prominent in the late training phase relative to
the early phase. Similarly, the representation/learning-success predictions (based on feedback-
valence sensitivity) are more powerful for the late relative to the early training phase. We posit
that trial-by-trial corrective feedback information facilitates rapidly updating learners’ internal
representations to enhance categorization success. More successful and faster learners likely
leverage the feedback better, leading to the more native-similar multidimensional representa-
tions of the acquired speech categories. During sound-to-category learning, interactions be-
tween the striatum, auditory cortex, and frontoparietal regions might enable the integration
of perceptual representation and feedback valence, mediating the shift from novice to skilled
behavioral performance (Reetzke et al., 2018).

Learning non-native novel phonemic contrasts is a key step toward acquiring new words in a
foreign language. Previous studies have demonstrated that both learning non-native phonemic
contrasts and learning new words rely on the feedback/reward-sensitive striatal regions (Feng
et al., 2019; Lim et al., 2019; Ripolles et al., 2014, 2016) and interactions within corticocortical
and corticostriatal networks (Li et al., 2014; Lopez-Barroso et al., 2013; Shtyrov, 2012). The stria-
tal activations are associated with domain-general reward processes, where a reward signal (e.g.,
gaining money or receiving feedback) may facilitate the formation of new memories in general
(Adcock et al., 2006; Wolosin et al., 2012) and drive the acquisition of different language com-
ponents (beyond phonetic/phonological learning). The interaction between the striatum and cor-
tical regions has been proposed to be a neural driving force for the formation of cortical
representations in language learning (Feng et al., 2019; Ripolles et al., 2014). Here, we further
demonstrate that individual differences in learning success and the robustness of the emerging
native-similar neural representations are both associated with the feedback sensitivity in the cor-
ticostriatal network. This corticostriatal interaction mechanism may not be restricted to the learn-
ing of novel non-native phonemic contrasts but also could be used in other aspects of language
learning (e.g., learning new words and grammar). Further studies need to be conducted across
different domains of language learning to directly address this question.
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To what extent can our results generalize to typical language learning contexts? Prior stud-
ies have trained participants on a sound-to-meaning training paradigm that involves learning
novel words as well as tone categories (Deng et al., 2016; Wong et al., 2007). Similar to the
current study, large individual differences underlie learning performance in this learning con-
text as well. Interestingly, during the initial word learning, learners often make lexical errors,
but by the end of the training, most errors are in disambiguating tonal categories. Indeed, a
prior study demonstrated that learning success in such a paradigm may be driven by poorer
representations of tone category information in subcortical auditory regions (Chandrasekaran
et al., 2012). Thus, representational plasticity may underlie individual differences in learning
to map pitch information irrespective of learning context. However, it is also possible that in a
more ecological word learning context, there would be a need for greater couplings among
the lexical-semantic network, STG, and the reward-related corticostriatal pathways. In this
context, individual differences in learning success may depend on emerging representations
of tone categories as well as lexical-semantic representations.

Conclusion

Using the multivariate intersubject RSA and predictive modeling approaches, we decon-
structed the neural sources of interindividual differences in learning success during the process
of learning to map non-native speech sounds into discrete categories. Successful learners can
build robust and detailed speech representations that are similar to those in native listeners.
The greater similarity between non-native learners and native listeners in neural representations
of tone-category-related pitch information is associated with more rapid learning and better
learning outcomes. Neural representations in successful learners are encoded in a cost-efficient
manner: The representational space is multidimensional but with a limited number of dimen-
sions that maximize the categorization of newly acquired speech categories. The emerging
native-similar representations in more successful learners are associated with neural sensitivity
to feedback valence in a distributed frontostriatal network. We provide new evidence for the
neural mechanisms underlying the successful acquisition of non-native speech categories in
adulthood and insights into the scaffolding for the development of individualized speech
training protocols that maximize learning outcomes with effective feedback.
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