Studies have shown that the integrity of white matter tracts connecting different regions in the left cerebral hemisphere is important for aphasia recovery after stroke. However, the impact of the underlying structural connection between the cortex and the cerebellum in post-stroke aphasia is poorly understood. We studied the microstructural integrity of the cerebellum and the corticocerebellar connections and their role in picture naming. Fifty-six patients with left cerebral infarcts (sparing the cerebellum) underwent diffusion tensor imaging (DTI) and Boston Naming Test. We compared the fractional anisotropy (FA) and mean diffusivity (MD) values of the right and the left cerebellum (lobular gray and white matter structures) and cerebellocortical connections. Recursive feature elimination and Spearman correlation analyses were performed to evaluate the relationship between naming performance and the corticocerebellar connections. We found that the right, relative to left, cerebellar structures and their connections with the left cerebrum showed lower FA and higher MD values, both reflecting lower microstructural integrity. This trend was not observed in the healthy controls. Higher MD values of the right major cerebellar outflow tract were associated with poorer picture naming performance. Our study provides the first DTI data demonstrating the critical importance of ascending and descending corticocerebellar connections for naming outcomes after stroke.

Aphasia is a common and devastating consequence most frequently observed following left hemisphere cortical stroke. A growing literature points toward the importance of white matter tracts in understanding the neural mechanisms of language processing and determining the nature of language deficits and recovery patterns in aphasia (Ivanova et al., 2016). A large number of studies show that the integrity of white matter tracts in the lesioned left cerebral hemisphere is a crucial factor related to language outcomes after stroke (Bae et al., 2022; Bonilha et al., 2014; Ivanova et al., 2016; Kierońska et al., 2021). However, most investigations have focused on the cortical white matter tracts connecting the frontal, temporal, and parietal regions. There is limited information regarding the role of corticocerebellar white matter integrity in post-stroke aphasia. Assessing white matter networks that extend beyond the cortex may provide a more comprehensive assessment of brain damage and its impact on language processing.

In the past three decades, converging lines of research from clinical, neuroanatomical, and functional neuroimaging investigations have provided compelling evidence that the right cerebellum is engaged in a broad range of language and cognitive functions, well beyond its historical association with sensorimotor control (Mariën et al., 2014; Murdoch, 2010; Stoodley, 2012). In a large meta-analysis of functional magnetic resonance imaging (MRI) studies, consistent activations in the right cerebellar lobules were associated with language functions (Stoodley & Schmahmann, 2009). Damage to the right cerebellum has been associated with deficits in language tasks such as verbal fluency, naming, word generation, word stem completion, and syntactic processing (Baillieux et al., 2010; Gómez Beldarrain et al., 1997; Mariën et al., 2001; Richter et al., 2007). Cerebellar injuries due to various causes beyond ischemic stroke were also shown to be associated with language deficits in children and adults (Mariën & Borgatti, 2018). Neurodevelopmental abnormalities of frontocerebellar fibers were associated with deficits in language processing in children with autism or specific language impairments (Hodge et al., 2010). Similarly, patients with cerebellar vermian tumors had increased reading errors compared to healthy controls (Moretti et al., 2002).

The cerebellum is massively interconnected with the cerebral cortex, and neuroanatomical studies have shown bidirectional pathways between the cerebellum and multiple cortical structures involved in language and cognitive processing (Kelly & Strick, 2003; Schmahmann, 2001). Advances in diffusion-weighted MRI, including diffusion-tensor imaging (DTI), have helped to characterize the macro- and microstructural state of neuronal pathways between the cerebellum and cerebrum. DTI studies in healthy controls show that the cerebellum receives input from the cortex via the corticopontocerebellar (CPC) tracts and sends information to the cortex via the dentatorubrothalamocortical tract (DRTC; Keser et al., 2015).

A stroke in the cortex can disrupt the flow of information to the contralateral cerebellum and potentially cause a condition commonly termed crossed-cerebellar diaschisis (Feeney & Baron, 1986) consisting of cerebellar functional inactivation (Gold & Lauritzen, 2002), hypometabolism (Serrati et al., 1994), and hypoperfusion (Lin et al., 2009). Cortical strokes also can cause retrograde cerebellar changes in neuronal activity, metabolism, and structure (Förster et al., 2014; Keser et al., 2022). Studies investigating motor recovery in cortical strokes show that the structural integrity of corticocerebellar white matter tracts is linked to motor outcomes after stroke (Schulz et al., 2017; Wang et al., 2012). However, it remains largely unclear to what extent the structural integrity of the underlying corticocerebellar pathways is linked to language outcomes after stroke.

Our first aim was to explore the microstructural integrity of the relevant cerebellar structures and cerebellar connections to the cortex bilaterally using DTI in a cohort of stroke participants with infarct involving the left cerebral cortex. We hypothesized that the right cerebellar structures and tracts connecting the right cerebellum to the left cerebrum would show diminished microstructural integrity compared to their counterparts. The second aim was to investigate the association between naming and the microstructural integrity of cerebellar structures. We hypothesized that damage to the tracts connecting the right cerebellum and the left cerebrum would be associated with poorer naming performance. We focused on naming impairment, as this is the most common residual deficit in aphasia.

Participants

The study was approved by the Institutional Review Board of the Johns Hopkins University School of Medicine, where all data collection occurred. All participants provided written informed consent.

This study included 56 right-handed (median age 60, range 29–81; 37 female), native English-speaking participants with infarct involving the left cerebral cortex. This study consisted of a retrospective analysis of prospectively collected data on participants with stroke involving the left cerebral cortex who had undergone language testing and MRI studies at the Stroke Cognitive Outcomes and Recovery (SCORE) Lab over a period of nine years (Table 1). We included participants who had both DTI and naming data. Additionally, we included 10 healthy right-handed participants (median age 55, age range 42–66; 5 females) from our center who underwent the same DTI study as normative data for right–left trends of the cerebellar structures and tracts.

Table 1.

Summary of the demographics.

SubjectAgeGenderEducation (in years)Boston Naming Test (/60)Time since stroke (in weeks)
37 Male 12 24 
64 Female 18 56 24 
60 Female 14 46 24 
60 Male 14 26 24 
79 Female 12 52 24 
68 Male 18 58 24 
36 Female 12 36 24 
54 Female 12 56 24 
66 Male 14 24 
10 74 Male 16 24 
11 47 Female 15 58 24 
12 74 Male 15 30 26 
13 79 Male 22 34 36 
14 29 Female 16 30 38 
15 55 Female 15 58 47 
16 36 Female 14 60 49 
17 65 Female 14 58 50 
18 78 Female 16 50 
19 37 Male 14 60 50 
20 29 Female 12 50 51 
21 41 Female 18 58 51 
22 64 Male 16 60 51 
23 53 Male 18 24 52 
24 50 Female 12 40 52 
25 50 Male 16 48 52 
26 41 Female 12 46 52 
27 64 Male 16 26 52 
28 63 Female 18 58 52 
29 50 Male 16 56 52 
30 47 Female 16 50 52 
31 64 Male 18 58 52 
32 65 Male 14 58 52 
33 61 Male 12 58 52 
34 29 Female 18 30 52 
35 77 Female 16 60 54 
36 50 Male 12 52 55 
37 68 Male 10 36 56 
38 55 Male 12 42 59 
39 63 Female 18 58 60 
40 62 Female 32 63 
41 47 Male 18 10 64 
42 79 Male 18 72 
43 58 Male 15 20 83 
44 81 Male 16 52 88 
45 69 Female 12 12 104 
46 65 Male 18 14 108 
47 44 Male 16 32 112 
48 52 Female 14 116 
49 65 Male 10 116 
50 79 Male 18 22 159 
51 69 Male 12 32 171 
52 54 Female 10 20 202 
53 58 Male 16 10 216 
54 69 Female 12 228 
55 59 Male 13 20 472 
56 72 Male 16 36 522 
SubjectAgeGenderEducation (in years)Boston Naming Test (/60)Time since stroke (in weeks)
37 Male 12 24 
64 Female 18 56 24 
60 Female 14 46 24 
60 Male 14 26 24 
79 Female 12 52 24 
68 Male 18 58 24 
36 Female 12 36 24 
54 Female 12 56 24 
66 Male 14 24 
10 74 Male 16 24 
11 47 Female 15 58 24 
12 74 Male 15 30 26 
13 79 Male 22 34 36 
14 29 Female 16 30 38 
15 55 Female 15 58 47 
16 36 Female 14 60 49 
17 65 Female 14 58 50 
18 78 Female 16 50 
19 37 Male 14 60 50 
20 29 Female 12 50 51 
21 41 Female 18 58 51 
22 64 Male 16 60 51 
23 53 Male 18 24 52 
24 50 Female 12 40 52 
25 50 Male 16 48 52 
26 41 Female 12 46 52 
27 64 Male 16 26 52 
28 63 Female 18 58 52 
29 50 Male 16 56 52 
30 47 Female 16 50 52 
31 64 Male 18 58 52 
32 65 Male 14 58 52 
33 61 Male 12 58 52 
34 29 Female 18 30 52 
35 77 Female 16 60 54 
36 50 Male 12 52 55 
37 68 Male 10 36 56 
38 55 Male 12 42 59 
39 63 Female 18 58 60 
40 62 Female 32 63 
41 47 Male 18 10 64 
42 79 Male 18 72 
43 58 Male 15 20 83 
44 81 Male 16 52 88 
45 69 Female 12 12 104 
46 65 Male 18 14 108 
47 44 Male 16 32 112 
48 52 Female 14 116 
49 65 Male 10 116 
50 79 Male 18 22 159 
51 69 Male 12 32 171 
52 54 Female 10 20 202 
53 58 Male 16 10 216 
54 69 Female 12 228 
55 59 Male 13 20 472 
56 72 Male 16 36 522 

MRI Acquisition and Preprocessing

3D sagittal acquired T1-weighted magnetization prepared rapid acquisition with gradient echo (MPRAGE) had a spatial resolution of 1 mm × 1 mm × 1 mm, field of view (FOV) = 256 mm × 256 mm × 180 mm, matrix size: 256 × 256, TR/TE: 2,000/3 ms. T2-weighted spin-echo images were acquired axially with a slice thickness of 2 mm with no gaps, FOV = 212 mm × 212 mm × 154 mm, matrix size: 256 × 256, TR/TE: 4,171/12 ms. FLAIR images were acquired axially with 2 mm slice thickness, FOV = 256 mm × 256 mm × 138 mm, matrix size: 256 × 256, TR/TE: 8,000/140 ms. Diffusion-weighted imaging (DWI) data were acquired axially with no gaps and a total of 32 diffusion orientations, with an additional b0 with TR/TE: 7,013/71 ms, FOV = 212 mm × 212 mm × 154 mm, matrix size: 256 × 256; b value = 700 s/mm2 (Landman et al., 2011), slice thickness/in-plane resolution = /2.2 mm/0.82 mm.

DWI data files were converted into NIfTI format using dcm2nii. We used DSI Studio for the remainder of the DWI pre-preprocessing. Diffusion-weighted images were resampled to 1 mm isotropic voxels, and the b-table was checked by an automatic quality control routine to ensure its accuracy (Schilling et al., 2019). Isotropic (1 mm × 1 mm × 1 mm) voxels were used in the analysis. Next, we generated indices of fractional anisotropy (FA; μ ± σ) and axial, radial, and mean diffusivities (MD; ×10−3 mm2 s−1) by tensor calculation.

Lesion Load and Cerebellar Segmentation

The lesion load was calculated as the percentage of total lesion volume to intracranial volume. Cerebellar segmentation was conducted by using probabilistic cerebellar SUIT atlas-based segmentation (a spatially unbiased atlas template of the cerebellum and brainstem; Diedrichsen et al., 2011; Diedrichsen & Zotow, 2015). Bilateral cerebellar segments VI, Crus I and II, VIIb, VIIIa, VIIIb, which previously were shown to be involved in language processing (Mariën & Borgatti, 2018) were extracted (Figure 1A). We included both gray and white matter tissue in the segmentation. Cerebrospinal fluid contamination was removed from the cerebellar lobules using the upper threshold radial diffusivity (RD) of 1.5 × 10−3 mm2 s−1 (Keser et al., 2021; Metzler-Baddeley et al., 2012). The regions then were edited with neuroanatomical guidance for each individual in native space (Diedrichsen et al., 2011; Diedrichsen & Zotow, 2015; i.e., moving the volume of interest in 3D space, removing neighboring tissues with smoothing and shaving functions).

Figure 1.

3D illustration of cerebellar segmentation on apparent diffusion coefficient maps from a single individual in the cohort. (A) Fronto-, (B) parieto-, (C) temporo-, (D) occipito-, and (E) ponto-cerebellar tracts, and (F) dentatorubrothalamocortical tract. Fibers are illustrated in color coded fashion (blue: fibers in superior inferior axis; red: fibers in medial lateral axis; green: fibers in anterior posterior axis). Magnetic resonance images of subject #16 were used for this illustration.

Figure 1.

3D illustration of cerebellar segmentation on apparent diffusion coefficient maps from a single individual in the cohort. (A) Fronto-, (B) parieto-, (C) temporo-, (D) occipito-, and (E) ponto-cerebellar tracts, and (F) dentatorubrothalamocortical tract. Fibers are illustrated in color coded fashion (blue: fibers in superior inferior axis; red: fibers in medial lateral axis; green: fibers in anterior posterior axis). Magnetic resonance images of subject #16 were used for this illustration.

Close modal

Tractography

We utilized a semiautomated brute force and multiple regions-of-interest (ROIs) tractography method with fiber assignment by the continuous tracking (FACT) algorithm (Wakana et al., 2007). In the first step, DSI Studio automatic atlas-guided tractography recognition was performed to obtain middle and superior cerebellar pedunculi fibers; frontopontine, parietopontine, temporopontine, and occipitopontine tracts; and intracerebellar and thalamocortical fibers (Schilling et al., 2019). The FA threshold was 0.15, and the angular threshold was 70° (Keser et al., 2015). In step two, manual editing of the tracks was performed with neuroanatomy guidance (Keser et al., 2015), and the crossed fibers were combined. The right middle cerebellar peduncle and left corticopontine tracts were combined and vice versa to obtain the frontopontocerebellar (FPC; Figure 1B), parietopontocerebellar (PPC; Figure 1C), temporopontocerebellar (TPC; Figure 1D), occipitopontocerebellar (OCP; Figure 1E) tracts (Keser et al., 2015) bilaterally. These tracts connect the left cerebrum to the right cerebellum and the right cerebrum to the left cerebellum. For the DRTC tract (Figure 1F), the fibers arising from the ventrolateral, ventral anterior, intralaminar, and dorsomedial nuclei of the thalamus (Mariën & Borgatti, 2018) were isolated from the entire thalamocortical pathways and combined with the contralateral superior cerebellar peduncle. This tract connects the right cerebellum to the left cerebrum and the left cerebellum to the right cerebrum. Some of the tracts in relation to the lesions were also highlighted in different subjects (Figure 2). There were some visual overlaps between the tracts.

Figure 2.

Illustration of temporopontocerebellar (TPC; from subject #4), dentatorubrothalamocortical tract (DRTC; from subject #26), parietopontocerebellar tracts (PPC; from subject #12) on the right (R) and left (L) in relation to the infarcts (circled with red). Please note loss of fibers in the infarcted tissue.

Figure 2.

Illustration of temporopontocerebellar (TPC; from subject #4), dentatorubrothalamocortical tract (DRTC; from subject #26), parietopontocerebellar tracts (PPC; from subject #12) on the right (R) and left (L) in relation to the infarcts (circled with red). Please note loss of fibers in the infarcted tissue.

Close modal

Language Assessments

Stroke participants naming skills were assessed using the Boston Naming Test (BNT), a visual confrontation test for picture naming (Kaplan et al., 2001; Mack et al., 1992). The participants were asked to name line drawings of objects (30 or 60 items, all scaled to 60 items for analysis). Participants who scored 0 on the BNT were not excluded from the analysis. We focused on naming because anomia is present in all types of aphasia. In addition to the naming test, we administered an assessment of global language skills to all stroke participants. Due to the retrospective nature of the analysis, some participants completed the short form of the Boston Diagnostic Aphasia Examination, Third Edition (BDAE-3; Goodglass et al., 2001), and other participants completed Part 1 of the Western Aphasia Battery—Revised (WAB-R; Kertesz, 2007). Consistent with prior publications by our group (Keser et al., 2021; Meier et al., 2020), we captured global aphasia severity by first collating data from equivalent auditory comprehension, repetition, naming, and other verbal expression subtests from each assessment for each participant. Then, for each assessment (i.e., BDAE-3 or WAB-R), we generated subtest z scores using the formula z = (x − μ)/σ, such that x is a participant’s raw subtest score, μ corresponds to the sample’s subtest-specific mean score (averaged across all participants and time points), and σ corresponds to the sample’s subtest-specific standard deviation (Table 2).

Table 2.

Summary of z scores from Boston Diagnostic Aphasia Examination-3 (BDAE-3) and Western Aphasia Battery (WAB-R) presented as mean and range.

BDAE-3 subtestz-scores range (min–max)WAB-R subtestz-scores range (min–max)
Word comprehension −2.53, 0.73 Auditory word recognition −3.16, 0.33 
Complex ideational material −1.72, 1.02 Auditory verbal comprehension −0.96, 0.96 
Commands −2.06, 0.78 Sequential commands −2.58, 0.47 
Repetition (words and sentences) −2.01, 2.19 Repetition −3.06, 0.52 
Automatized sequences −2.96, 0.48 Sentence completion −3.18, 0.29 
Responsive speech −1.70, 1.43 Responsive speech −3.18, 0.29 
Total score −2.14, 0.97 Total −2.81, 0.45 
BDAE-3 subtestz-scores range (min–max)WAB-R subtestz-scores range (min–max)
Word comprehension −2.53, 0.73 Auditory word recognition −3.16, 0.33 
Complex ideational material −1.72, 1.02 Auditory verbal comprehension −0.96, 0.96 
Commands −2.06, 0.78 Sequential commands −2.58, 0.47 
Repetition (words and sentences) −2.01, 2.19 Repetition −3.06, 0.52 
Automatized sequences −2.96, 0.48 Sentence completion −3.18, 0.29 
Responsive speech −1.70, 1.43 Responsive speech −3.18, 0.29 
Total score −2.14, 0.97 Total −2.81, 0.45 

Statistical Analyses

The Shapiro–Wilk test was performed to test the normality of the variables. BNT, age, and many DTI metrics were found to be non-normal. For the first aim, the Mann–Whitney test was conducted to compare the right and left-sided FA and MD values of cerebellar regions and tracts. For the second aim, to account for correlated variables in high dimensional data (multi-collinearity), we performed recursive feature elimination (RFE) to determine the importance of DTI predictors for BNT. This model included age, education, time since stroke, and DTI metrics. Once the significant DTI predictors were identified, we conducted a Spearman correlation between BNT and significant predictors. Fisher Z transformation was performed to obtain Z values and 95% confidence intervals (CI). We controlled for multiple comparisons using false discovery rate (FDR) correction (q < 0.05). To show the correlation between the lesion load and the laterality of the cerebellar segments and tracts, we calculated the laterality index (LI) of MD of cerebellar segments/tracts using the following formula: (Left_segment/tract_[MD] − Right_segment/tract_[MD])/(Left_segment/tract_[MD] + Right_segment/tract_[MD]). We then used Spearman correlation to generate a correlation matrix using between lesion load and LIs of the cerebellar lobules/tracts. Similarly, a correlation matrix was created for other language scores and significant DTI predictors of BNT.

The median BNT score was 36 [0–60]; education = 15 years (interquartile range (iqr): 4), lesion load = 0.61 (iqr: 2.64).

Cerebellar Lobules

For participants with left cerebral infarcts, the FA value was significantly higher on the left compared to the right for the cerebellar segments VI (0.26(0.05) vs. 0.23(0.04), w = 2,139, q < 0.01), Crus I (0.23(0.03) vs. 0.21(0.03), w = 2,063 q < 0.01), Crus II (0.25(0.03) vs. 0.23(0.04), w = 2,124, q < 0.01), and VIIb (0.26(0.04) vs. 0.24(0.04), w = 1,924 q = 0.02). The MD values were lower for left compared to the right for the cerebellar segments VI (0.87(0.10) vs. 0.92(0.13), w = 1,041 q < 0.01), Crus I (0.90(0.10) vs. 0.96(0.12), w = 971, q < 0.01), and Crus II (0.82(0.08) vs. 0.85(0.12), w = 1,035, q < 0.01). No other contrast was statistically significant (Table 3). No comparisons were significant for the healthy participants (Table 4). Lesion load showed a significant negative correlation with LI of MD of all cerebellar lobules (compared to left cerebellum, lower microstructural integrity in the right cerebellar structures were associated with a higher lesion load; p < 0.05; Figure 3).

Table 3.

Summary of comparison analyses in stroke patients.

 LeftRightwpqCohen’s d
VI_FA 0.26 (0.05) 0.23 (0.04) 2139 <0.001 <0.001 0.66 
Crus_I_FA* 0.23 (0.03) 0.21 (0.03) 2063 0.001 0.002 0.67 
Crus_II_FA* 0.25 (0.03) 0.23 (0.04) 2124 <0.001 0.001 0.57 
VIIb_FA* 0.26 (0.04) 0.24 (0.04) 1924 0.01 0.02 0.50 
VIIIa_FA 0.27 (0.04) 0.25 (0.04) 1870 0.03 0.05 0.50 
VIIIb_FA 0.28 (0.05) 0.27 (0.04) 1645 0.43 0.54 0.22 
VI_MD* 0.87 (0.10) 0.92 (0.13) 1041 0.004 0.008 −0.43 
Crus_I_MD* 0.90 (0.10) 0.96 (0.12) 971 0.001 0.002 −0.54 
Crus_II_MD* 0.82 (0.08) 0.85 (0.12) 1035 0.004 0.008 −0.29 
VII_MD 0.82 (0.10) 0.83 (0.10) 1249 0.12 0.17 −0.10 
VIIIa_MD 0.82 (0.08) 0.82 (0.09) 1496 0.92 0.92 0.00 
VIIIb_MD 0.84 (0.08) 0.84 (0.08) 1483 0.86 0.90 0.00 
Intracerebellar_FA 0.26 (0.02) 0.26 (0.02) 1684 0.31 0.32 0.00 
FPC_FA 0.49 (0.03) 0.49 (0.03) 1438 0.65 0.74 0.00 
PPC_FA* 0.49 (0.04) 0.51 (0.03) 940 <0.001 0.002 −0.57 
TPC_FA 0.47 (0.03) 0.48 (0.03) 1598 0.61 0.73 −0.33 
OPC_FA 0.48 (0.02) 0.48 (0.03) 1447 0.69 0.75 0.00 
DRTC_FA* 0.45 (0.03) 0.41 (0.03) 2380 <0.001 <0.001 1.33 
Intracerebellar_MD* 0.84 (0.08) 0.87 (0.09) 1067 0.008 0.01 −0.35 
FPC_MD* 0.93 (0.11) 0.88 (0.08) 2206 <0.001 <0.001 0.52 
PPC_MD* 0.90 (0.11) 0.85 (0.07) 2295 <0.001 <0.001 0.54 
TPC_MD* 0.96 (0.11) 0.91 (0.11) 1963 0.007 0.01 0.45 
OPC_MD* 0.96 (0.12) 0.91 (0.09) 2003 0.004 0.008 0.47 
DRTC_MD* 0.92 (0.09) 1.09 (0.11) 446 <0.001 <0.001 −1.69 
 LeftRightwpqCohen’s d
VI_FA 0.26 (0.05) 0.23 (0.04) 2139 <0.001 <0.001 0.66 
Crus_I_FA* 0.23 (0.03) 0.21 (0.03) 2063 0.001 0.002 0.67 
Crus_II_FA* 0.25 (0.03) 0.23 (0.04) 2124 <0.001 0.001 0.57 
VIIb_FA* 0.26 (0.04) 0.24 (0.04) 1924 0.01 0.02 0.50 
VIIIa_FA 0.27 (0.04) 0.25 (0.04) 1870 0.03 0.05 0.50 
VIIIb_FA 0.28 (0.05) 0.27 (0.04) 1645 0.43 0.54 0.22 
VI_MD* 0.87 (0.10) 0.92 (0.13) 1041 0.004 0.008 −0.43 
Crus_I_MD* 0.90 (0.10) 0.96 (0.12) 971 0.001 0.002 −0.54 
Crus_II_MD* 0.82 (0.08) 0.85 (0.12) 1035 0.004 0.008 −0.29 
VII_MD 0.82 (0.10) 0.83 (0.10) 1249 0.12 0.17 −0.10 
VIIIa_MD 0.82 (0.08) 0.82 (0.09) 1496 0.92 0.92 0.00 
VIIIb_MD 0.84 (0.08) 0.84 (0.08) 1483 0.86 0.90 0.00 
Intracerebellar_FA 0.26 (0.02) 0.26 (0.02) 1684 0.31 0.32 0.00 
FPC_FA 0.49 (0.03) 0.49 (0.03) 1438 0.65 0.74 0.00 
PPC_FA* 0.49 (0.04) 0.51 (0.03) 940 <0.001 0.002 −0.57 
TPC_FA 0.47 (0.03) 0.48 (0.03) 1598 0.61 0.73 −0.33 
OPC_FA 0.48 (0.02) 0.48 (0.03) 1447 0.69 0.75 0.00 
DRTC_FA* 0.45 (0.03) 0.41 (0.03) 2380 <0.001 <0.001 1.33 
Intracerebellar_MD* 0.84 (0.08) 0.87 (0.09) 1067 0.008 0.01 −0.35 
FPC_MD* 0.93 (0.11) 0.88 (0.08) 2206 <0.001 <0.001 0.52 
PPC_MD* 0.90 (0.11) 0.85 (0.07) 2295 <0.001 <0.001 0.54 
TPC_MD* 0.96 (0.11) 0.91 (0.11) 1963 0.007 0.01 0.45 
OPC_MD* 0.96 (0.12) 0.91 (0.09) 2003 0.004 0.008 0.47 
DRTC_MD* 0.92 (0.09) 1.09 (0.11) 446 <0.001 <0.001 −1.69 

Note. Significant results are highlighted in bold and with asterisk (*). q values were obtained from false discovery rate analyses. w values (sum of the positive or negative ranks) derive from Mann–Whitney test. d values were obtained from Cohen’s effect size analysis. Abbreviations: DRTC = dentatorubrothalamocortical tract; FA = fractional anisotropy; FPC = frontopontocerebellar tract; MD = mean diffusivity; OPC = occipitopontocerebellar tract; PPC = parietopontocerebellar tract; TPC = temporoparietopontine tract.

Table 4.

Summary of comparison analyses for healthy subjects.

 LeftRightwpCohen’s d
VI_FA 0.29 (0.04) 0.27 (0.06) 68 0.19 0.39 
Crus_I_FA 0.26 (0.05) 0.25 (0.03) 56 0.69 0.24 
Crus_II_FA 0.27 (0.05) 0.26 (0.06) 55 0.74 0.18 
VIIb_FA 0.26 (0.04) 0.27 (0.04) 45 0.74 −0.25 
VIIIa_FA 0.27 (0.03) 0.27 (0.04) 47 0.85 0.00 
VIIIb_FA 0.29 (0.05) 0.29 (0.04) 41 0.53 0.00 
VI_MD 0.75 (0.07) 0.74 (0.05) 50 1.00 0.16 
Crus_I_MD 0.78 (0.07) 0.79 (0.06) 33 0.22 −0.15 
Crus_II_MD 0.82 (0.03) 0.82 (0.11) 47 0.85 0.00 
VII_MD 0.82 (0.06) 0.82 (0.08) 54 0.8 0.00 
VIIIa_MD 0.82 (0.08) 0.81 (0.15) 57 0.63 0.08 
VIIIb_MD 0.77 (0.06) 0.76 (0.11) 58 0.58 0.11 
Intracerebellar_FA 0.25 (0.01) 0.24 (0.01) 76 0.05 1.00 
FPC_FA 0.5 (0.07) 0.51 (0.09) 50 1.00 −0.12 
PPC_FA 0.5 (0.04) 0.49 (0.06) 50 1.00 0.20 
TPC_FA 0.48 (0.02) 0.47 (0.03) 65 0.28 0.39 
OPC_FA 0.49 (0.05) 0.49 (0.05) 50 1.00 0.00 
DRTC_FA 0.49 (0.04) 0.48 (0.03) 63 0.35 0.28 
Intracerebellar_MD 0.8 (0.02) 0.78 (0.02) 62 0.39 1.00 
FPC_MD 0.81 (0.12) 0.79 (0.12) 57 0.63 0.17 
PPC_MD 0.82 (0.12) 0.84 (0.11) 52 0.91 −0.17 
TPC_MD 0.81 (0.11) 0.81 (0.11) 52 0.91 0.00 
OPC_MD 0.82 (0.08) 0.84 (0.11) 54 0.80 −0.21 
DRTC_MD 0.95 (0.19) 0.96 (0.19) 44 0.68 −0.05 
 LeftRightwpCohen’s d
VI_FA 0.29 (0.04) 0.27 (0.06) 68 0.19 0.39 
Crus_I_FA 0.26 (0.05) 0.25 (0.03) 56 0.69 0.24 
Crus_II_FA 0.27 (0.05) 0.26 (0.06) 55 0.74 0.18 
VIIb_FA 0.26 (0.04) 0.27 (0.04) 45 0.74 −0.25 
VIIIa_FA 0.27 (0.03) 0.27 (0.04) 47 0.85 0.00 
VIIIb_FA 0.29 (0.05) 0.29 (0.04) 41 0.53 0.00 
VI_MD 0.75 (0.07) 0.74 (0.05) 50 1.00 0.16 
Crus_I_MD 0.78 (0.07) 0.79 (0.06) 33 0.22 −0.15 
Crus_II_MD 0.82 (0.03) 0.82 (0.11) 47 0.85 0.00 
VII_MD 0.82 (0.06) 0.82 (0.08) 54 0.8 0.00 
VIIIa_MD 0.82 (0.08) 0.81 (0.15) 57 0.63 0.08 
VIIIb_MD 0.77 (0.06) 0.76 (0.11) 58 0.58 0.11 
Intracerebellar_FA 0.25 (0.01) 0.24 (0.01) 76 0.05 1.00 
FPC_FA 0.5 (0.07) 0.51 (0.09) 50 1.00 −0.12 
PPC_FA 0.5 (0.04) 0.49 (0.06) 50 1.00 0.20 
TPC_FA 0.48 (0.02) 0.47 (0.03) 65 0.28 0.39 
OPC_FA 0.49 (0.05) 0.49 (0.05) 50 1.00 0.00 
DRTC_FA 0.49 (0.04) 0.48 (0.03) 63 0.35 0.28 
Intracerebellar_MD 0.8 (0.02) 0.78 (0.02) 62 0.39 1.00 
FPC_MD 0.81 (0.12) 0.79 (0.12) 57 0.63 0.17 
PPC_MD 0.82 (0.12) 0.84 (0.11) 52 0.91 −0.17 
TPC_MD 0.81 (0.11) 0.81 (0.11) 52 0.91 0.00 
OPC_MD 0.82 (0.08) 0.84 (0.11) 54 0.80 −0.21 
DRTC_MD 0.95 (0.19) 0.96 (0.19) 44 0.68 −0.05 

Note. w values (sum of the positive or negative ranks) derive from Mann–Whitney test. d values were obtained from Cohen’s effect size analysis. Abbreviations: DRTC = dentatorubrothalamocortical tract; FA = fractional anisotropy; FPC = frontopontocerebellar tract; MD = mean diffusivity; OPC = occipitopontocerebellar tract; PPC = parietopontocerebellar tract; TPC = temporoparietopontine tract.

Figure 3.

Heatmap correlation matrix between the laterality index (LI) of the cerebellar lobules/tracts and total lesion load (totLL). Of note, all the correlations in the heat map were significant (defined by p < 0.05). Abbreviations: DRTC = dentatorubrothalamocortical tract; FPC = frontopontocerebellar tracts; MD = mean diffusivity; PPC = parietopontocerebellar tracts; OPC = occipitopontocerebellar tracts; TPC = temporopontocerebellar tracts.

Figure 3.

Heatmap correlation matrix between the laterality index (LI) of the cerebellar lobules/tracts and total lesion load (totLL). Of note, all the correlations in the heat map were significant (defined by p < 0.05). Abbreviations: DRTC = dentatorubrothalamocortical tract; FPC = frontopontocerebellar tracts; MD = mean diffusivity; PPC = parietopontocerebellar tracts; OPC = occipitopontocerebellar tracts; TPC = temporopontocerebellar tracts.

Close modal

Cerebellar Tracts

For participants with left cerebral infarcts, the FA value of PPC tract (0.49(0.04) vs. 0.51(0.03), w = 940, q < 0.01) was significantly lower on the left compared to the right. The left DRTC tract had significantly higher FA compared to the right (0.45(0.03) vs. 0.41(0.03), w = 2,380, q < 0.01). The MD values were significantly higher on the left for FPC (0.93(0.11) vs. 0.88(0.08), w = 2,206, q < 0.01), PPC (0.90(0.11) vs. 0.85(0.07), w = 2,295, q < 0.01), TPC (0.96(0.11) vs. 0.91(0.11), w = 1,963, q = 0.01), and OPC (0.96(0.12), 0.91(0.09), w = 2,003, q < 0.01), whereas the MD values were lower on the left for intracerebellar fibers (0.84(0.08) vs. 0.87(0.09), w = 1,067, q = 0.01), and DRTC tract (0.92(0.09) vs. 1.09 (0.11), w = 446, q < 0.01) (see Table 3). No comparisons were significant for the healthy participants (Table 4). Lesion load showed a significant positive correlation with LI (in comparison to contralateral counterparts, lower microstructural integrity in tracts connecting the right cerebellum to left cerebrum associated with a higher lesion load) of MD of all cerebellar tracts (p < 0.05; Figure 3).

Correlation of Corticocerebellar White Matter Integrity With Naming

Based on RFE, the MD values of right DRTC tract, right VIIb, VIIIa, and Crus II segments, left VIIIa segments were significant predictors of naming accuracy. Out of the significant predictors, Spearman correlation analyses showed that the MD values of the right DRTC (rho = −0.53, Z = −0.59, 95% CI [−0.7, −0.31], p < 0.01), right VIIb (rho = −0.63, Z = −0.75, 95% CI [−0.77, −0.44], p < 0.01), right VIIIa (rho = −0.74, Z = −0.95, 95% CI [−0.84, −0.59], p < 0.01), right Crus II (rho = −0.51, Z = −0.56, 95% CI [−0.68, −0.29], p < 0.01), and left VIIIa (rho = −0.60, Z = −0.69, 95% CI [−0.75, −0.4], p < 0.01) segments showed significant correlation with BNT scores (Figure 4).

Figure 4.

Scatterplot illustration of Boston Naming Test (BNT) and the mean diffusivity (MD) of right VIIIa, right VIIb, Crus II and left VIIIa segments as MD of right (R) dentatorubrothalamiccortical tract (DRTC) with rho and p values.

Figure 4.

Scatterplot illustration of Boston Naming Test (BNT) and the mean diffusivity (MD) of right VIIIa, right VIIb, Crus II and left VIIIa segments as MD of right (R) dentatorubrothalamiccortical tract (DRTC) with rho and p values.

Close modal

These regions did not show any significant correlation with other language scores (see Figure 5). Of note, time since stroke was also found to be a significant predictor, but this correlation was rather weak (rho = −0.28, Z = −0.29, 95% CI [−0.51, −0.018], p = 0.04).

Figure 5.

Heatmap correlation matrix of behavioral outcomes and regions that showed significant association with picture naming. Of note, none of the correlations in the heat map were significant (defined by p > 0.05). Abbreviations: R_DRTC = right dentatorubrothalamocortical tract; command = commands or sequential commands; repet = repetition of words and sentences; resspech = responsive speech; sentcompl = sentence completion; verbalcompr = verbal comprehension; wordcompr = word comprehension.

Figure 5.

Heatmap correlation matrix of behavioral outcomes and regions that showed significant association with picture naming. Of note, none of the correlations in the heat map were significant (defined by p > 0.05). Abbreviations: R_DRTC = right dentatorubrothalamocortical tract; command = commands or sequential commands; repet = repetition of words and sentences; resspech = responsive speech; sentcompl = sentence completion; verbalcompr = verbal comprehension; wordcompr = word comprehension.

Close modal

To investigate the role of the right cerebellum in language processing, we examined the anatomical connections between the cerebellum and the cerebrum using in vivo DTI tractography in post-stroke aphasia. Our results revealed that the right cerebellar segments and their connections to left cortical regions have reduced microstructural integrity after a left cerebral infarct. In addition, our results showed that picture naming was significantly associated with bilateral cerebellar nuclei and the right DRTC tract. This association was not observed for other language measures. These results have direct implications not only for a better understanding of the mechanisms associated with post-stroke language recovery but also for supporting the use of targeted interventions such as noninvasive brain stimulation techniques in post-stroke aphasia rehabilitation.

Stroke participants showed a significant MD increase for the left FPC, TPC, PPC, and OPC tracts compared to their homologous counterparts in the nonaffected cerebral hemisphere, whereas healthy controls did not show a difference in MD values for left versus right tracts. DTI analyses also showed a significant FA decrease and MD increase for the right cerebellar segments compared to the left cerebellar segments and the right DRTC tract compared to the left DRTC tract for stroke participants. This difference was not observed in the healthy controls. Reduced microstructural integrity in the ascending tracts from the right cerebellum to the left cortex suggests that cortical lesions trigger not only anterograde degeneration but also retrograde degeneration of axons that pass through the left cerebral stroke lesions (Schulz et al., 2017).

Reduction in the white matter integrity of the cerebellar language segments (left and right VIIIa) was associated with poorer naming performance (i.e., the lower the white matter integrity, the lower the naming accuracy). The integrity of the cerebellar outflow tract, the DRTC, also was positively associated with naming performance. We speculate that this could reflect the progressive structural alterations resulting from Wallerian degeneration in chronic stroke. Structural changes in Wallerian degeneration evolve over time with progressive loss of FA from the early subacute to the chronic stage (Thomalla et al., 2005). The strong correlation between lesion load and the microstructural integrity of nonlesioned parts of the cerebellar structures potentially supports the theory of secondary degeneration of cerebellar regions driven by lesion load.

Our results support the assertion that the reorganization of the spared brain regions beyond the lesion is crucial for post-stroke language recovery. There is growing evidence that the destruction of white matter and subsequent disruption of brain connectivity are strong predictors of post-stroke naming impairment (Bonilha et al., 2014; Meier et al., 2019). While this investigation focused on the contribution of feed-forward and feed-back cerebellar pathways to naming impairment, it complements existing evidence that implicates the more commonly investigated cortical tracts (Ivanova et al., 2016).

Previous studies also have substantiated the crucial role of the right cerebellum for language processing (Mariën et al., 2014; Murdoch, 2010). The results presented here support targeting the corticocerebellar network with interventional strategies based on neuromodulation with the goal of increasing the plasticity of the residual cortical language network and subsequently facilitating better post-stroke language outcomes in the chronic phase. Recent studies already have provided evidence that right cerebellar neuromodulation via transcranial direct current stimulation improves language skills in patients with chronic post-stroke aphasia (Marangolo et al., 2018; Sebastian et al., 2020).

In this study, picture naming correlated well with MD values due to a concomitant increase in axial diffusivity (AD) and RD, which affect MD. It was previously shown that ischemic infarcts lead to a downstream increase in diffusivity metrics such as MD, AD, and RD (Keser et al., 2021; Visser et al., 2019). Our finding aligns well with a previous longitudinal stroke study showing an increase in all the diffusivity measures (MD, AD, and RD) in perilesional ischemic tissue or demyelinating lesions (Klistorner et al., 2015; Umarova et al., 2017). Picture naming accuracy was not correlated with FA values.

Using the term “microstructural integrity” blindly without theoretical foundations might be misleading (Jones et al., 2013). However, when it comes to cerebral infarction, especially in the chronic stage, there are many diffusion studies supporting higher MD as a sign of white matter degradation (Keser, Meier, et al., 2020; Keser, Sebastian, et al., 2020). Although human postmortem studies are the gold standard to address these situations, consistent findings in human neuroimaging studies cannot be underestimated.

Our study has several limitations. First, our study design was cross-sectional; therefore, we were unable to investigate the longitudinal effects of change in cerebellar tracts and how that might relate to naming recovery. Second, we had a limited number of directions that prevented the usage of advanced diffusion methods, such as the constrained spherical deconvolution method. This could potentially be one of the reasons for the visual overlap of the tracts. Another reason could be the lack of high-resolution acquisition (<1 mm of voxel size) and low b values. Third, we did not have acute perfusion/cerebral blood flow imaging data in our participants, which meant we were unable to rule out the influence of crossed-cerebellar diaschisis. Fourth, as deterministic tracking failed to show decussating cerebellar fibers, our analysis generated cerebellar tracts in two segments and merged them to obtain the final tract. Finally, cerebellar structures were found to correlate only with the BNT score and not with the other language metrics (Figure 5). This selective association might be due to the cerebellum’s well-known role in the motor component of speech. Larger studies with more systematic language assessments are needed to elaborate further on this. Despite its limitations, our study is unique: To the best of our knowledge, this is the first example in the literature that provides evidence of secondary progressive degeneration in the right cerebellum and cerebellocortical connections after left cerebral infarction and associates this degeneration with poorer performance in picture naming. Our study may pave the way for targeted interventions such as noninvasive brain stimulation techniques that engage these spared pathways to prevent secondary degeneration and lead to better outcomes in post-stroke aphasia.

Argye E. Hillis, National Institute on Deafness and Other Communication Disorders (https://dx.doi.org/10.13039/100000055), Award ID: R01 DC05375. Argye E. Hillis, National Institute on Deafness and Other Communication Disorders (https://dx.doi.org/10.13039/100000055), Award ID: R01 DC015466. Argye E. Hillis, National Institute on Deafness and Other Communication Disorders (https://dx.doi.org/10.13039/100000055), Award ID: R01 DC014664. Rajani Sebastian, National Institute on Deafness and Other Communication Disorders (https://dx.doi.org/10.13039/100000055), Award ID: R00 DC015554. Rajani Sebastian, National Institute on Deafness and Other Communication Disorders (https://dx.doi.org/10.13039/100000055), Award ID: R56 DC019639. Rajani Sebastian, National Institute on Deafness and Other Communication Disorders (https://dx.doi.org/10.13039/100000055), Award ID: R01 DC019639. Peter van Zijl, National Institutes of Health, Office of the Director (https://dx.doi.org/10.13039/100000052), Award ID: 1S10OD021648.

Zafer Keser: Conceptualization; Formal analysis; Visualization; Writing – original draft; Writing – review & editing. Erin L. Meier: Formal analysis; Writing – review & editing. Melissa D. Stockbridge: Writing – review & editing. Bonnie L. Breining: Writing – review & editing. Argye E. Hillis: Conceptualization; Funding acquisition; Writing – review & editing. Rajani Sebastian: Conceptualization; Funding acquisition; Writing – review & editing.

Data will be available upon reasonable request, such as reproducing the article’s key findings and conclusions or for building on the published work. MRI scans cannot be made openly available due to institutional restrictions. We used dcm2nii (https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage) and DSI Studio (version released 3/21/22) for the imaging analysis (https://dsi-studio.labsolver.org/). We used RStudio Version 4.1.3 (https://www.r-project.org/) for statistical analysis. Publicly available codes were used, and no extra in-house codes were created for the study.

Fractional anisotropy:

Quantifies the degree of anisotropic movement of water molecules.

Mean diffusivity:

The average of the magnitudes of water molecule diffusion across all three axes.

Atlas-based segmentation:

A method of bringing and registering previously labeled segments of the brain from a template into each individual subject’s brain.

Bae
,
C. R.
,
Na
,
Y.
,
Cho
,
M.
,
Hwang
,
Y. M.
,
Tae
,
W. S.
, &
Pyun
,
S. B.
(
2022
).
Structural changes in the arcuate fasciculus and recovery of post-stroke aphasia: A 6-month follow-up study using diffusion tensor imaging
.
Neurorehabilitation and Neural Repair
,
36
(
9
),
633
644
. ,
[PubMed]
Baillieux
,
H.
,
De Smet
,
H. J.
,
Dobbeleir
,
A.
,
Paquier
,
P. F.
,
De Deyn
,
P. P.
, &
Mariën
,
P.
(
2010
).
Cognitive and affective disturbances following focal cerebellar damage in adults: A neuropsychological and SPECT study
.
Cortex
,
46
(
7
),
869
879
. ,
[PubMed]
Bonilha
,
L.
,
Rorden
,
C.
, &
Fridriksson
,
J.
(
2014
).
Assessing the clinical effect of residual cortical disconnection after ischemic strokes
.
Stroke
,
45
(
4
),
988
993
. ,
[PubMed]
Diedrichsen
,
J.
,
Maderwald
,
S.
,
Küper
,
M.
,
Thürling
,
M.
,
Rabe
,
K.
,
Gizewski
,
E.
,
Ladd
,
M. E.
, &
Timmann
,
D.
(
2011
).
Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure
.
NeuroImage
,
54
(
3
),
1786
1794
. ,
[PubMed]
Diedrichsen
,
J.
, &
Zotow
,
E.
(
2015
).
Surface-based display of volume-averaged cerebellar imaging data
.
PLOS ONE
,
10
(
7
),
Article e0133402
. ,
[PubMed]
Feeney
,
D. M.
, &
Baron
,
J.-C.
(
1986
).
Diaschisis
.
Stroke
,
17
(
5
),
817
830
. ,
[PubMed]
Förster
,
A.
,
Kerl
,
H. U.
,
Goerlitz
,
J.
,
Wenz
,
H.
, &
Groden
,
C.
(
2014
).
Crossed cerebellar diaschisis in acute isolated thalamic infarction detected by dynamic susceptibility contrast perfusion MRI
.
PLOS ONE
,
9
(
2
),
Article e88044
. ,
[PubMed]
Gold
,
L.
, &
Lauritzen
,
M.
(
2002
).
Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function
.
Proceedings of the National Academy of Sciences
,
99
(
11
),
7699
7704
. ,
[PubMed]
Gómez Beldarrain
,
M.
,
García-Moncó
,
J. C.
,
Quintana
,
J. M.
,
Llorens
,
V.
, &
Rodeño
,
E.
(
1997
).
Diaschisis and neuropsychological performance after cerebellar stroke
.
European Neurology
,
37
(
2
),
82
89
. ,
[PubMed]
Goodglass
,
H.
,
Kaplan
,
E.
, &
Barresi
,
B.
(
2001
).
The Boston Diagnostic Aphasia Examination—Third Edition (BDAE-3)
.
Pro-Ed
.
Hodge
,
S. M.
,
Makris
,
N.
,
Kennedy
,
D. N.
,
Caviness
,
V. S.
,
Howard
,
J.
,
McGrath
,
L.
,
Steele
,
S.
,
Frazier
,
J. A.
,
Tager-Flusberg
,
H.
, &
Harris
,
G. J.
(
2010
).
Cerebellum, language, and cognition in autism and specific language impairment
.
Journal of Autism and Developmental Disorders
,
40
(
3
),
300
316
. ,
[PubMed]
Ivanova
,
M. V.
,
Isaev
,
D. Y.
,
Dragoy
,
O. V.
,
Akinina
,
Y. S.
,
Petrushevskiy
,
A. G.
,
Fedina
,
O. N.
,
Shklovsky
,
V. M.
, &
Dronkers
,
N. F.
(
2016
).
Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia
.
Cortex
,
85
,
165
181
. ,
[PubMed]
Jones
,
D. K.
,
Knösche
,
T. R.
, &
Turner
,
R.
(
2013
).
White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI
.
NeuroImage
,
73
,
239
254
. ,
[PubMed]
Kaplan
,
E.
,
Goodglass
,
H.
, &
Weintraub
,
S.
(
2001
).
Boston Naming Test—Second Edition (BNT-2)
.
Pro-Ed
.
Kelly
,
R. M.
, &
Strick
,
P. L.
(
2003
).
Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate
.
Journal of Neuroscience
,
23
(
23
),
8432
8444
. ,
[PubMed]
Kertesz
,
A.
(
2007
).
Western Aphasia Battery—Revised (WAB-R)
.
Pearson
.
Keser
,
Z.
,
Faria
,
A. V.
, &
Hillis
,
A. E.
(
2022
).
Progressive crossed cerebellar Wallerian degeneration after hemispheric infarct
.
Stroke
,
53
(
4
),
e143
e144
. ,
[PubMed]
Keser
,
Z.
,
Hasan
,
K. M.
,
Mwangi
,
B. I.
,
Kamali
,
A.
,
Ucisik-Keser
,
F. E.
,
Riascos
,
R. F.
,
Yozbatiran
,
N.
,
Francisco
,
G. E.
, &
Narayana
,
P. A.
(
2015
).
Diffusion tensor imaging of the human cerebellar pathways and their interplay with cerebral macrostructure
.
Frontiers in Neuroanatomy
,
9
,
Article 41
. ,
[PubMed]
Keser
,
Z.
,
Meier
,
E. L.
,
Stockbridge
,
M. D.
,
Breining
,
B. L.
,
Sebastian
,
R.
, &
Hillis
,
A. E.
(
2021
).
Thalamic nuclei and thalamocortical pathways after left hemispheric stroke and their association with picture naming
.
Brain Connectivity
,
11
(
7
),
553
565
. ,
[PubMed]
Keser
,
Z.
,
Meier
,
E. L.
,
Stockbridge
,
M. D.
, &
Hillis
,
A. E.
(
2020
).
The role of microstructural integrity of major language pathways in narrative speech in the first year after stroke
.
Journal of Stroke and Cerebrovascular Diseases
,
29
(
9
),
Article 105078
. ,
[PubMed]
Keser
,
Z.
,
Sebastian
,
R.
,
Hasan
,
K. M.
, &
Hillis
,
A. E.
(
2020
).
Right hemispheric homologous language pathways negatively predicts poststroke naming recovery
.
Stroke
,
51
(
3
),
1002
1005
. ,
[PubMed]
Kierońska
,
S.
,
Świtońska
,
M.
,
Meder
,
G.
,
Piotrowska
,
M.
, &
Sokal
,
P.
(
2021
).
Tractography alterations in the arcuate and uncinate fasciculi in post-stroke aphasia
.
Brain Sciences
,
11
(
1
),
Article 53
. ,
[PubMed]
Klistorner
,
A.
,
Vootakuru
,
N.
,
Wang
,
C.
,
Yiannikas
,
C.
,
Graham
,
S. L.
,
Parratt
,
J.
,
Garrick
,
R.
,
Levin
,
N.
,
Masters
,
L.
,
Lagopoulos
,
J.
, &
Barnett
,
M. H.
(
2015
).
Decoding diffusivity in multiple sclerosis: Analysis of optic radiation lesional and non-lesional white matter
.
PLOS ONE
,
10
(
3
),
Article e0122114
. ,
[PubMed]
Landman
,
B. A.
,
Huang
,
A. J.
,
Gifford
,
A.
,
Vikram
,
D. S.
,
Lim
,
I. A. L.
,
Farrell
,
J. A.
,
Bogovic
,
J. A.
,
Hua
,
J.
,
Chen
,
M
,
Jarso
,
S.
,
Smith
,
S. A.
,
Joel
,
S.
,
Mori
,
S.
,
Pekar
,
J. J.
,
Barker
,
P. B.
,
Prince
,
J. L.
, &
van Zijl
,
P. C. M.
(
2011
).
Multi-parametric neuroimaging reproducibility: A 3-T resource study
.
NeuroImage
,
54
(
4
),
2854
2866
. ,
[PubMed]
Lin
,
D.
,
Kleinman
,
J.
,
Wityk
,
R.
,
Gottesman
,
R.
,
Hillis
,
A.
,
Lee
,
A.
, &
Barker
,
P.
(
2009
).
Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging
.
American Journal of Neuroradiology
,
30
(
4
),
710
715
. ,
[PubMed]
Mack
,
W. J.
,
Freed
,
D. M.
,
Williams
,
B. W.
, &
Henderson
,
V. W.
(
1992
).
Boston Naming Test: Shortened versions for use in Alzheimer’s disease
.
Journal of Gerontology
,
47
(
3
),
P154
P158
. ,
[PubMed]
Marangolo
,
P.
,
Fiori
,
V.
,
Caltagirone
,
C.
,
Pisano
,
F.
, &
Priori
,
A.
(
2018
).
Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia
.
Journal of Cognitive Neuroscience
,
30
(
2
),
188
199
. ,
[PubMed]
Mariën
,
P.
,
Ackermann
,
H.
,
Adamaszek
,
M.
,
Barwood
,
C. H.
,
Beaton
,
A.
,
Desmond
,
J.
,
De Witte
,
E.
,
Fawcett
,
A. J.
,
Hertrich
,
I.
,
Küper
,
M.
,
Leggio
,
M.
,
Marvel
,
C.
,
Molinari
,
M.
,
Murdoch
,
B. E.
,
Nicolson
,
R. I.
,
Schmahmann
,
J. D.
,
Stoodley
,
C. J.
,
Thürling
,
M.
,
Timmann
,
D.
,
Wouters
,
E.
, &
Ziegler
,
W.
(
2014
).
Consensus paper: Language and the cerebellum: An ongoing enigma
.
The Cerebellum
,
13
(
3
),
386
410
. ,
[PubMed]
Mariën
,
P.
, &
Borgatti
,
R.
(
2018
).
Language and the cerebellum
. In
Handbook of clinical neurology
(
Vol. 154
, pp.
181
202
).
Elsevier
. ,
[PubMed]
Mariën
,
P.
,
Engelborghs
,
S.
,
Fabbro
,
F.
, &
De Deyn
,
P. P.
(
2001
).
The lateralized linguistic cerebellum: A review and a new hypothesis
.
Brain and Language
,
79
(
3
),
580
600
. ,
[PubMed]
Meier
,
E. L.
,
Johnson
,
J. P.
,
Pan
,
Y.
, &
Kiran
,
S.
(
2019
).
The utility of lesion classification in predicting language and treatment outcomes in chronic stroke-induced aphasia
.
Brain Imaging and Behavior
,
13
(
6
),
1510
1525
. ,
[PubMed]
Meier
,
E. L.
,
Sheppard
,
S. M.
,
Goldberg
,
E. B.
,
Head
,
C. R.
,
Ubellacker
,
D. M.
,
Walker
,
A.
, &
Hillis
,
A. E.
(
2020
).
Naming errors and dysfunctional tissue metrics predict language recovery after acute left hemisphere stroke
.
Neuropsychologia
,
148
,
Article 107651
. ,
[PubMed]
Metzler-Baddeley
,
C.
,
O’Sullivan
,
M. J.
,
Bells
,
S.
,
Pasternak
,
O.
, &
Jones
,
D. K.
(
2012
).
How and how not to correct for CSF-contamination in diffusion MRI
.
NeuroImage
,
59
(
2
),
1394
1403
. ,
[PubMed]
Moretti
,
R.
,
Bava
,
A.
,
Torre
,
P.
,
Antonello
,
R. M.
, &
Cazzato
,
G.
(
2002
).
Reading errors in patients with cerebellar vermis lesions
.
Journal of Neurology
,
249
(
4
),
461
468
. ,
[PubMed]
Murdoch
,
B. E.
(
2010
).
The cerebellum and language: Historical perspective and review
.
Cortex
,
46
(
7
),
858
868
. ,
[PubMed]
Richter
,
S.
,
Gerwig
,
M.
,
Aslan
,
B.
,
Wilhelm
,
H.
,
Schoch
,
B.
,
Dimitrova
,
A.
,
Gizewski
,
E. R.
,
Ziegler
,
W.
,
Karnath
,
H.-O.
, &
Timmann
,
D.
(
2007
).
Cognitive functions in patients with MR-defined chronic focal cerebellar lesions
.
Journal of Neurology
,
254
(
9
),
1193
1203
. ,
[PubMed]
Schilling
,
K. G.
,
Yeh
,
F.-C.
,
Nath
,
V.
,
Hansen
,
C.
,
Williams
,
O.
,
Resnick
,
S.
,
Anderson
,
A. W.
, &
Landman
,
B. A.
(
2019
).
A fiber coherence index for quality control of B-table orientation in diffusion MRI scans
.
Magnetic Resonance Imaging
,
58
,
82
89
. ,
[PubMed]
Schmahmann
,
J. D.
(
2001
).
The cerebrocerebellar system: Anatomic substrates of the cerebellar contribution to cognition and emotion
.
International Review of Psychiatry
,
13
(
4
),
247
260
.
Schulz
,
R.
,
Frey
,
B. M.
,
Koch
,
P.
,
Zimerman
,
M.
,
Bönstrup
,
M.
,
Feldheim
,
J.
,
Timmermann
,
J. E.
,
Schön
,
G.
,
Cheng
,
B.
,
Thomalla
,
G.
,
Gerloff
,
C.
, &
Hummel
,
F. C.
(
2017
).
Cortico-cerebellar structural connectivity is related to residual motor output in chronic stroke
.
Cerebral Cortex
,
27
(
1
),
635
645
. ,
[PubMed]
Sebastian
,
R.
,
Kim
,
J. H.
,
Brenowitz
,
R.
,
Tippett
,
D. C.
,
Desmond
,
J. E.
,
Celnik
,
P. A.
, &
Hillis
,
A. E.
(
2020
).
Cerebellar neuromodulation improves naming in post-stroke aphasia
.
Brain Communications
,
2
(
2
),
Article fcaa179
. ,
[PubMed]
Serrati
,
C.
,
Marchal
,
G.
,
Rioux
,
P.
,
Viader
,
F.
,
Petit-Taboué
,
M. C.
,
Lochon
,
P.
,
Luet
,
D.
,
Derlon
,
J. M.
&
Baron
,
J.
(
1994
).
Contralateral cerebellar hypometabolism: A predictor for stroke outcome?
Journal of Neurology, Neurosurgery & Psychiatry
,
57
(
2
),
174
179
. ,
[PubMed]
Stoodley
,
C. J.
(
2012
).
The cerebellum and cognition: Evidence from functional imaging studies
.
The Cerebellum
,
11
(
2
),
352
365
. ,
[PubMed]
Stoodley
,
C. J.
, &
Schmahmann
,
J. D.
(
2009
).
Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies
.
NeuroImage
,
44
(
2
),
489
501
. ,
[PubMed]
Thomalla
,
G.
,
Glauche
,
V.
,
Weiller
,
C.
, &
Röther
,
J.
(
2005
).
Time course of Wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging
.
Journal of Neurology, Neurosurgery & Psychiatry
,
76
(
2
),
266
268
. ,
[PubMed]
Umarova
,
R. M.
,
Beume
,
L.
,
Reisert
,
M.
,
Kaller
,
C. P.
,
Klöppel
,
S.
,
Mader
,
I.
,
Glauche
,
V.
,
Kiselev
,
V. G.
,
Catani
,
M.
, &
Weiller
,
C.
(
2017
).
Distinct white matter alterations following severe stroke: Longitudinal DTI study in neglect
.
Neurology
,
88
(
16
),
1546
1555
. ,
[PubMed]
Visser
,
M. M.
,
Yassi
,
N.
,
Campbell
,
B. C. V.
,
Desmond
,
P. M.
,
Davis
,
S. M.
,
Spratt
,
N.
,
Parsons
,
M.
, &
Bivard
,
A.
(
2019
).
White matter degeneration after ischemic stroke: A longitudinal diffusion tensor imaging study
.
Journal of Neuroimaging
,
29
(
1
),
111
118
. ,
[PubMed]
Wakana
,
S.
,
Caprihan
,
A.
,
Panzenboeck
,
M. M.
,
Fallon
,
J. H.
,
Perry
,
M.
,
Gollub
,
R. L.
,
Hua
,
K.
,
Zhang
,
J.
,
Jiang
,
H.
,
Dubey
,
P.
,
Blitz
,
A.
,
van Zijl
,
P.
, &
Mori
,
S.
(
2007
).
Reproducibility of quantitative tractography methods applied to cerebral white matter
.
NeuroImage
,
36
(
3
),
630
644
. ,
[PubMed]
Wang
,
L. E.
,
Tittgemeyer
,
M.
,
Imperati
,
D.
,
Diekhoff
,
S.
,
Ameli
,
M.
,
Fink
,
G. R.
, &
Grefkes
,
C.
(
2012
).
Degeneration of corpus callosum and recovery of motor function after stroke: A multimodal magnetic resonance imaging study
.
Human Brain Mapping
,
33
(
12
),
2941
2956
. ,
[PubMed]

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Julie Fiez

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.