Abstract

As part of silent reading models, visual orthographic information is transduced into an auditory phonological code in a process of grapheme-to-phoneme conversion (GPC). This process is often identified with lateral temporal-parietal regions associated with auditory phoneme encoding. However, the role of articulatory phonemic representations and the precentral gyrus in GPC is ambiguous. Though the precentral gyrus is implicated in many functional MRI studies of reading, it is not clear if the time course of activity in this region is consistent with the precentral gyrus being involved in GPC. We recorded cortical electrophysiology during a bimodal match/mismatch task from eight patients with perisylvian subdural electrodes to examine the time course of neural activity during a task that necessitated GPC. Patients made a match/mismatch decision between a 3-letter string and the following auditory bi-phoneme. We characterized the distribution and timing of evoked broadband high gamma (70–170 Hz) as well as phase-locking between electrodes. The precentral gyrus emerged with a high concentration of broadband high gamma responses to visual and auditory language as well as mismatch effects. The pars opercularis, supramarginal gyrus, and superior temporal gyrus were also involved. The precentral gyrus showed strong phase-locking with the caudal fusiform gyrus during letter-string presentation and with surrounding perisylvian cortex during the bimodal visual-auditory comparison period. These findings hint at a role for precentral cortex in transducing visual into auditory codes during silent reading.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Edward Chang

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.