Envelope and frequency-following responses (FFRENV and FFRTFS) are scalp-recorded electrophysiological potentials that closely follow the periodicity of complex sounds such as speech. These signals have been established as important biomarkers in speech and learning disorders. However, despite important advances, it has remained challenging to map altered FFRENV and FFRTFS to altered processing in specific brain regions. Here we explore the utility of a deconvolution approach based on the assumption that FFRENV and FFRTFS reflect the linear superposition of responses that are triggered by the glottal pulse in each cycle of the fundamental frequency (F0 responses). We tested the deconvolution method by applying it to FFRENV and FFRTFS of rhesus monkeys to human speech and click trains with time-varying pitch patterns. Our analyses show that F0ENV responses could be measured with high signal-to-noise ratio and featured several spectro-temporally and topographically distinct components that likely reflect the activation of brainstem (<5 ms; 200–1000 Hz), midbrain (5–15 ms; 100–250 Hz), and cortex (15–35 ms; ∼90 Hz). In contrast, F0TFS responses contained only one spectro-temporal component that likely reflected activity in the midbrain. In summary, our results support the notion that the latency of F0 components map meaningfully onto successive processing stages. This opens the possibility that pathologically altered FFRENV or FFRTFS may be linked to altered F0ENV or F0TFS and from there to specific processing stages and ultimately spatially targeted interventions.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Josef Rauschecker

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.