Neural responses appear to synchronize with sentence structure. However, researchers have debated whether this response in the delta band (0.5–3 Hz) really reflects hierarchical information, or simply lexical regularities. Computational simulations in which sentences are represented simply as sequences of high-dimensional numeric vectors that encode lexical information seem to give rise to power spectra similar to those observed for sentence synchronization, suggesting that sentence-level cortical tracking findings may reflect sequential lexical or part-of-speech information, and not necessarily hierarchical syntactic information. Using electroencephalography (EEG) data and the frequency-tagging paradigm, we develop a novel experimental condition to tease apart the predictions of the lexical and the hierarchical accounts of the attested low-frequency synchronization. Under a lexical model, synchronization should be observed even when words are reversed within their phrases (e.g. “sheep white grass eat” instead of “white sheep eat grass”), because the same lexical items are preserved at the same regular intervals. Critically, such stimuli are not syntactically well-formed; thus a hierarchical model does not predict synchronization of phrase- and sentence-level structure in the reversed phrase condition. Computational simulations confirm these diverging predictions. EEG data from N = 31 native speakers of Mandarin show robust delta synchronization to syntactically well-formed isochronous speech. Importantly, no such pattern is observed for reversed phrases, consistent with the hierarchical, but not the lexical, accounts.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Peter Hagoort

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.