Though the right hemisphere has been implicated in talker processing, it is thought to play a minimal role in phonetic processing, at least relative to the left hemisphere. Recent evidence suggests that the right posterior temporal cortex may support learning of phonetic variation associated with a specific talker. In the current study, listeners heard a male talker and a female talker, one of whom produced an ambiguous fricative in /s/-biased lexical contexts (e.g., epi?ode) and one who produced it in /∫/-biased contexts (e.g., friend?ip). Listeners in a behavioral experiment (Experiment 1) showed evidence of lexically guided perceptual learning, categorizing ambiguous fricatives in line with their previous experience. Listeners in an fMRI experiment (Experiment 2) showed differential phonetic categorization as a function of talker, allowing for an investigation of the neural basis of talker-specific phonetic processing, though they did not exhibit perceptual learning (likely due to characteristics of our in-scanner headphones). Searchlight analyses revealed that the patterns of activation in the right superior temporal sulcus (STS) contained information both about who was talking and what phoneme they produced. We take this as evidence that talker information and phonetic information are integrated in the right STS. Functional connectivity analyses suggested that the process of conditioning phonetic identity on talker information depends on the coordinated activity of a left-lateralized phonetic processing system and a right-lateralized talker processing system. Overall, these results clarify the mechanisms through which the right hemisphere supports talker-specific phonetic processing.

This content is only available as a PDF.

Author notes

Handling Editor: Kate Watkins

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit

Article PDF first page preview

Article PDF first page preview

Supplementary data