Studies have shown that the integrity of white matter tracts connecting different regions in the left cerebral hemisphere is important for aphasia recovery after stroke. However, the impact of the underlying structural connection between the cortex and the cerebellum in post-stroke aphasia is poorly understood. We studied the microstructural integrity of the cerebellum and the corticocerebellar connections and their role in picture naming. Fifty-six patients with left cerebral infarcts (sparing the cerebellum) underwent diffusion tensor imaging (DTI) and Boston Naming Test. We compared the fractional anisotropy (FA) and mean diffusivity (MD) values of the right and the left cerebellum (lobular gray and white matter structures) and cerebellocortical connections. Recursive feature elimination and Spearman correlation analyses were performed to evaluate the relationship between naming performance and the corticocerebellar connections. We found that the right, relative to left, cerebellar structures and their connections with the left cerebrum showed lower FA and higher MD values, both reflecting lower microstructural integrity. This trend was not observed in the healthy controls. Higher MD values of the right major cerebellar outflow tract were associated with poorer picture naming performance. Our study provides the first DTI data demonstrating the critical importance of ascending and descending corticocerebellar connections for naming outcomes after stroke.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Julie Fiez

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit