We examined neural mechanisms associated with the learning of novel morphologically derived words in native Hebrew speakers within the Complementary Learning Systems (CLS) framework. Across four sessions, 28 participants were trained on an artificial language, which included two types of morphologically complex words: linear (root + suffix) with a salient structure, and non-linear (root interleaved with template), with a prominent derivational structure in participants’ first language (L1). A third simple monomorphemic condition, which served as baseline, was also included. On the first and fourth sessions, training was followed by testing in an fMRI scanner. Our behavioural results showed decomposition of both types of complex words, with the linear structure more easily learned than the non-linear structure. Our fMRI results showed involvement of frontal areas, associated with decomposition, only for the non-linear condition, after just the first session. We also observed training-related increases in activation in temporal areas specifically for the non-linear condition, which was correlated with participants’ L1 morphological awareness. These results demonstrate that morphological decomposition of derived words occurs in the very early stages of word learning, is influenced by L1 experience, and can facilitate word learning. However, in contrast to the CLS framework, we found no support for a shift from reliance on hippocampus to reliance on cortical areas in any of our conditions. Instead, our findings align more closely with recent theories showing a positive correlation between changes in hippocampus and cortical areas, suggesting that these representations co-exist and continue to interact with one another beyond initial learning.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Alec Marantz

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Supplementary data