Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Brianna L. Yamasaki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2024) 5 (4): 864–900.
Published: 11 September 2024
FIGURES
| View All (9)
Abstract
View article
PDF
We examined neural mechanisms associated with the learning of novel morphologically derived words in native Hebrew speakers within the Complementary Learning Systems (CLS) framework. Across four sessions, 28 participants were trained on an artificial language, which included two types of morphologically complex words: linear (root + suffix) with a salient structure, and non-linear (root interleaved with template), with a prominent derivational structure in participants’ first language (L1). A third simple monomorphemic condition, which served as baseline, was also included. On the first and fourth sessions, training was followed by testing in an fMRI scanner. Our behavioural results showed decomposition of both types of complex words, with the linear structure more easily learned than the non-linear structure. Our fMRI results showed involvement of frontal areas, associated with decomposition, only for the non-linear condition, after just the first session. We also observed training-related increases in activation in temporal areas specifically for the non-linear condition, which was correlated with participants’ L1 morphological awareness. These results demonstrate that morphological decomposition of derived words occurs in the very early stages of word learning, is influenced by L1 experience, and can facilitate word learning. However, in contrast to the CLS framework, we found no support for a shift from reliance on hippocampus to reliance on cortical areas in any of our conditions. Instead, our findings align more closely with recent theories showing a positive correlation between changes in hippocampus and cortical areas, suggesting that these representations co-exist and continue to interact with one another beyond initial learning.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2023) 4 (2): 297–317.
Published: 11 April 2023
FIGURES
Abstract
View article
PDF
One of the core features of brain maturation is functional specialization. Previous research has found that 7- to 8-year-old children start to specialize in both the temporal and frontal lobes. However, as children continue to develop their phonological and semantic skills rapidly until approximately 10 years old, it remained unclear whether any changes in specialization later in childhood would be detected. Thus, the goal of the current study was to examine phonological and semantic specialization in 9- to 10-year-old children during auditory word processing. Sixty-one children were included in the analysis. They were asked to perform a sound judgment task and a meaning judgment task, each with both hard and easy conditions to examine parametric effects. Consistent with previous results from 7- to 8-year-old children, direct task comparisons revealed language specialization in both the temporal and frontal lobes in 9- to 10-year-old children. Specifically, the left dorsal inferior frontal gyrus showed greater activation for the sound than the meaning task whereas the left middle temporal gyrus showed greater activation for the meaning than the sound task. Interestingly, in contrast to the previously reported finding that 7- to 8-year-old children primarily engage a general control region during the harder condition for both tasks, we showed that 9- to 10-year-old children recruited language-specific regions to process the more difficult task conditions. Specifically, the left superior temporal gyrus showed greater activation for the phonological parametric manipulation whereas the left ventral inferior frontal gyrus showed greater activation for the semantic parametric manipulation.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2020) 1 (3): 288–318.
Published: 01 July 2020
FIGURES
| View All (6)
Abstract
View article
PDF
An increasing body of research has investigated how bilingual language experience changes brain structure and function, including changes to task-free, or “resting-state” brain connectivity. Such findings provide important evidence about how the brain continues to be shaped by different language experiences throughout the lifespan. The neural effects of bilingual language experience can provide evidence about the additional processing demands placed on the linguistic and/or executive systems by dual-language use. While considerable research has used MRI to examine where these changes occur, such methods cannot reveal the temporal dynamics of functioning brain networks at rest. The current study used data from task-free EEGS to disentangle how the linguistic and cognitive demands of bilingual language use impact brain functioning. Data analyzed from 106 bilinguals and 91 monolinguals revealed that bilinguals had greater alpha power, and significantly greater and broader coherence in the alpha and beta frequency ranges than monolinguals. Follow-up analyses showed that higher alpha was related to language control: more second-language use, higher native-language proficiency, and earlier age of second-language acquisition. Bilateral beta power was related to native-language proficiency, whereas theta was related to native-language proficiency only in left-hemisphere electrodes. The results contribute to our understanding of how the linguistic and cognitive requirements of dual-language use shape intrinsic brain activity, and what the broader implications for information processing may be.