Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Kate E. Watkins
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2024) 5 (3): 774–794.
Published: 15 August 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Children with developmental language disorder (DLD) struggle to learn their native language for no apparent reason. While research on the neurobiological underpinnings of the disorder has focused on the role of corticostriatal systems, little is known about the role of the cerebellum in DLD. Corticocerebellar circuits might be involved in the disorder as they contribute to complex sensorimotor skill learning, including the acquisition of spoken language. Here, we used diffusion-weighted imaging data from 77 typically developing and 54 children with DLD and performed probabilistic tractography to identify the cerebellum’s white matter tracts: the inferior, middle, and superior cerebellar peduncles. Children with DLD showed lower fractional anisotropy (FA) in the inferior cerebellar peduncles (ICP), fiber tracts that carry motor and sensory input via the inferior olive to the cerebellum. Lower FA in DLD was driven by lower axial diffusivity. Probing this further with more sophisticated modeling of diffusion data, we found higher orientation dispersion but no difference in neurite density in the ICP of children with DLD. Reduced FA is therefore unlikely to be reflecting microstructural differences in myelination, rather the organization of axons in these pathways is disrupted. ICP microstructure was not associated with language or motor coordination performance in our sample. We also found no differences in the middle and superior peduncles, the main pathways connecting the cerebellum with the cortex. To conclude, it is not corticocerebellar but atypical olivocerebellar white matter connections that characterize DLD and suggest the involvement of the olivocerebellar system in speech and language acquisition and development.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2024) 5 (2): 409–431.
Published: 03 June 2024
FIGURES
| View All (11)
Abstract
View article
PDF
In this exploratory study we compare and contrast two methods for deriving a laterality index (LI) from functional magnetic resonance imaging (fMRI) data: the weighted bootstrapped mean from the LI Toolbox (toolbox method), and a novel method that uses subtraction of activations from homologous regions in left and right hemispheres to give an array of difference scores (mirror method). Data came from 31 individuals who had been selected to include a high proportion of people with atypical laterality when tested with functional transcranial Doppler ultrasound (fTCD). On two tasks, word generation and semantic matching, the mirror method generally gave better agreement with fTCD laterality than the toolbox method, both for individual regions of interest, and for a large region corresponding to the middle cerebral artery. LI estimates from this method had much smaller confidence intervals (CIs) than those from the toolbox method; with the mirror method, most participants were reliably lateralised to left or right, whereas with the toolbox method, a higher proportion were categorised as bilateral (i.e., the CI for the LI spanned zero). Reasons for discrepancies between fMRI methods are discussed: one issue is that the toolbox method averages the LI across a wide range of thresholds. Furthermore, examination of task-related t -statistic maps from the two hemispheres showed that language lateralisation is evident in regions characterised by deactivation, and so key information may be lost by ignoring voxel activations below zero, as is done with conventional estimates of the LI.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2024) 5 (2): 288–314.
Published: 03 June 2024
FIGURES
Abstract
View article
PDF
Approximately 7% of children have developmental language disorder (DLD), a neurodevelopmental condition associated with persistent language learning difficulties without a known cause. Our understanding of the neurobiological basis of DLD is limited. Here, we used FreeSurfer to investigate cortical surface area and thickness in a large cohort of 156 children and adolescents aged 10–16 years with a range of language abilities, including 54 with DLD, 28 with a history of speech-language difficulties who did not meet criteria for DLD, and 74 age-matched controls with typical language development (TD). We also examined cortical asymmetries in DLD using an automated surface-based technique. Relative to the TD group, those with DLD showed smaller surface area bilaterally in the inferior frontal gyrus extending to the anterior insula, in the posterior temporal and ventral occipito-temporal cortex, and in portions of the anterior cingulate and superior frontal cortex. Analysis of the whole cohort using a language proficiency factor revealed that language ability correlated positively with surface area in similar regions. There were no differences in cortical thickness, nor in asymmetry of these cortical metrics between TD and DLD. This study highlights the importance of distinguishing between surface area and cortical thickness in investigating the brain basis of neurodevelopmental disorders and suggests the development of cortical surface area to be of importance to DLD. Future longitudinal studies are required to understand the developmental trajectory of these cortical differences in DLD and how they relate to language maturation.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2020) 1 (1): 1–8.
Published: 01 March 2020