Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Tiina Parviainen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2023) 4 (1): 178–197.
Published: 08 March 2023
FIGURES
| View All (4)
Abstract
View article
PDF
The involvement of the motor cortex in language understanding has been intensively discussed in the framework of embodied cognition. Although some studies have provided evidence for the involvement of the motor cortex in different receptive language tasks, the role that it plays in language perception and understanding is still unclear. In the present study, we explored the degree of involvement of language and motor areas in a visually presented sentence comprehension task, modulated by language proficiency (L1: native language, L2: second language) and linguistic abstractness (literal, metaphorical, and abstract). Magnetoencephalography data were recorded from 26 late Chinese learners of English. A cluster-based permutation F test was performed on the amplitude of the source waveform for each motor and language region of interest (ROI). Results showed a significant effect of language proficiency in both language and motor ROIs, manifested as overall greater involvement of language ROIs (short insular gyri and planum polare of the superior temporal gyrus) in the L1 than the L2 during 300–500 ms, and overall greater involvement of motor ROI (central sulcus) in the L2 than the L1 during 600–800 ms. We interpreted the over-recruitment of the motor area in the L2 as a higher demand for cognitive resources to compensate for the inadequate engagement of the language network. In general, our results indicate a compensatory role of the motor cortex in L2 understanding.
Journal Articles
Publisher: Journals Gateway
Neurobiology of Language (2021) 2 (2): 226–253.
Published: 07 May 2021
FIGURES
| View All (10)
Abstract
View article
PDF
Speech perception is dynamic and shows changes across development. In parallel, functional differences in brain development over time have been well documented and these differences may interact with changes in speech perception during infancy and childhood. Further, there is evidence that the two hemispheres contribute unequally to speech segmentation at the sentence and phonemic levels. To disentangle those contributions, we studied the cortical tracking of various sized units of speech that are crucial for spoken language processing in children (4.7–9.3 years old, N = 34) and adults ( N = 19). We measured participants’ magnetoencephalogram (MEG) responses to syllables, words, and sentences, calculated the coherence between the speech signal and MEG responses at the level of words and sentences, and further examined auditory evoked responses to syllables. Age-related differences were found for coherence values at the delta and theta frequency bands. Both frequency bands showed an effect of stimulus type, although this was attributed to the length of the stimulus and not the linguistic unit size. There was no difference between hemispheres at the source level either in coherence values for word or sentence processing or in evoked response to syllables. Results highlight the importance of the lower frequencies for speech tracking in the brain across different lexical units. Further, stimulus length affects the speech–brain associations suggesting methodological approaches should be selected carefully when studying speech envelope processing at the neural level. Speech tracking in the brain seems decoupled from more general maturation of the auditory cortex.
Includes: Supplementary data