Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Cory Shain
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Open Mind (2024) 8: 235–264.
Published: 13 March 2024
FIGURES
Abstract
View article
PDF
The dynamics of the mind are complex. Mental processes unfold continuously in time and may be sensitive to a myriad of interacting variables, especially in naturalistic settings. But statistical models used to analyze data from cognitive experiments often assume simplistic dynamics. Recent advances in deep learning have yielded startling improvements to simulations of dynamical cognitive processes, including speech comprehension, visual perception, and goal-directed behavior. But due to poor interpretability, deep learning is generally not used for scientific analysis. Here, we bridge this gap by showing that deep learning can be used, not just to imitate, but to analyze complex processes, providing flexible function approximation while preserving interpretability. To do so, we define and implement a nonlinear regression model in which the probability distribution over the response variable is parameterized by convolving the history of predictors over time using an artificial neural network, thereby allowing the shape and continuous temporal extent of effects to be inferred directly from time series data. Our approach relaxes standard simplifying assumptions (e.g., linearity, stationarity, and homoscedasticity) that are implausible for many cognitive processes and may critically affect the interpretation of data. We demonstrate substantial improvements on behavioral and neuroimaging data from the language processing domain, and we show that our model enables discovery of novel patterns in exploratory analyses, controls for diverse confounds in confirmatory analyses, and opens up research questions in cognitive (neuro)science that are otherwise hard to study.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Open Mind (2024) 8: 177–201.
Published: 05 March 2024
FIGURES
Abstract
View article
PDF
Many studies of human language processing have shown that readers slow down at less frequent or less predictable words, but there is debate about whether frequency and predictability effects reflect separable cognitive phenomena: are cognitive operations that retrieve words from the mental lexicon based on sensory cues distinct from those that predict upcoming words based on context? Previous evidence for a frequency-predictability dissociation is mostly based on small samples (both for estimating predictability and frequency and for testing their effects on human behavior), artificial materials (e.g., isolated constructed sentences), and implausible modeling assumptions (discrete-time dynamics, linearity, additivity, constant variance, and invariance over time), which raises the question: do frequency and predictability dissociate in ordinary language comprehension, such as story reading? This study leverages recent progress in open data and computational modeling to address this question at scale. A large collection of naturalistic reading data (six datasets, >2.2 M datapoints) is analyzed using nonlinear continuous-time regression, and frequency and predictability are estimated using statistical language models trained on more data than is currently typical in psycholinguistics. Despite the use of naturalistic data, strong predictability estimates, and flexible regression models, results converge with earlier experimental studies in supporting dissociable and additive frequency and predictability effects.
Includes: Supplementary data