This article reports the second study in a series that investigates perceived instability—unrealistic sensations associated with virtual objects—of virtual haptic texture. Our first study quantified the maximum stiffness values under which virtual haptic textures were perceived to be stable (Choi & Tan, 2004). The present study investigated the effect of the collision-detection algorithm by removing the step changes in force magnitude that could have contributed to perceived instability in the first study. Our results demonstrate a significant increase in the maximum stiffness for stable haptic texture rendering. We also report a new type of perceived instability, aliveness, that is characterized by a pulsating sensation. We discuss the possible cause of aliveness and show that it is not always associated with control instability. Our results underscore the important roles played by environment modeling and human haptic perception, as well as control stability, in ensuring a perceptually stable virtual haptic environment.

This content is only available as a PDF.
You do not currently have access to this content.