Research on virtual environments (VE) produced significant advances in computer hardware (graphics boards and i/o tools) and software (real-time distributed simulations). However, fundamental questions remain about how user performance is affected by such factors as graphics refresh rate, resolution, control latencies, and multimodal feedback. This article reports on two experiments performed to examine dextrous manipulation of virtual objects. The first experiment studies the effect of graphics frame rate and viewing mode (monoscopic vs. stereoscopic) on the time required to grasp a moving target. The second experiment studies the effect of direct force feedback, pseudoforce feedback, and redundant force feedback on grasping force regulation. The trials were performed using a partially-immersive environment (graphics workstation and LCD glasses), a DataGlove, and the Rutgers Master with force feedback. Results of the first experiment indicate that stereoscopic viewing is beneficial for low refresh rates (it reduced task completion time by about 50% vs. monoscopic graphics). Results of the second experiment indicate that haptic feedback increases performance and reduces error rates, as compared to the open loop case (with no force feedback). The best performance was obtained when both direct haptic and redundant auditory feedback were provided to the user. The large number of subjects participating in these experiments (over 160 male and female) indicates good statistical significance for the above results.

This content is only available as a PDF.
You do not currently have access to this content.