Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Barbara Shinn-Cunningham
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2000) 9 (6): 638–647.
Published: 01 December 2000
Abstract
View article
PDF
Experiments were conducted to determine how the ability to detect and discriminate head-motion parallax depth cues is degraded by time delays between head movement and image update. The stimuli consisted of random-dot patterns that were programmed to appear as one cycle of a sinusoi dal grating when the subject's head moved. The results show that time delay between head movement and image update has essentially no effect on the ability to discrimi nate between two such gratings with different depth char acteristics when the delay is less than or equal to roughly 265 ms.
Journal Articles
Glenn Koh, Thomas E. von Wiegand, Rebecca Lee Garnett, Nathaniel I. Durlach, Barbara Shinn-Cunningham
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1999) 8 (6): 632–656.
Published: 01 December 1999
Abstract
View article
PDF
A relatively simple architectural space was modeled and used to compare the effects of spatial training in simulations versus training in the real world. Thirty-five subjects were trained in one of the following conditions: real world (RW), virtual environment (VE), nonimmersive virtual environment (NVE), and model (Mod). The VE condition made use of a head-mounted display to view the simulated environment, while the NVE condition used a desktop monitor. In the Mod condition, the subject viewed and could manipulate a 3-D model of the space, viewed from a desktop display. The training-transfer tasks, performed after brief unstructured exposure to the actual space or to one of the simulations, consisted of estimating the bearing and range to various targets in the real space from various spatially distributed stations, each such pair of estimates constituting a subtask of the overall transfer task. Results obtained from each of the four training conditions proved to be roughly the same. Training in any one of the simulations was comparable to training in the real world. Independent of training condition, there was a strong tendency among subjects to underestimate range. Variability in range errors was dominated by differences among subjects, whereas variability in bearing errors was dominated by differences among subtasks. These results are discussed in the context of plans for future work.