Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-5 of 5
Dylan M. Jones
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2003) 12 (2): 140–155.
Published: 01 April 2003
Abstract
View article
PDF
Three experiments investigated the effect of implementing low-level aspects of motor control for a collaborative carrying task within a VE interface, leaving participants free to devote their cognitive resources to the higher-level components of the task. In the task, participants collaborated with an autonomous virtual human in an immersive virtual environment (VE) to carry an object along a predefined path. In experiment 1, participants took up to three times longer to perform the task with a conventional VE interface, in which they had to explicitly coordinate their hand and body movements, than with an interface that controlled the low-level tasks of grasping and holding onto the virtual object. Experiments 2 and 3 extended the study to include the task of carrying an object along a path that contained obstacles to movement. By allowing participants' virtual arms to stretch slightly, the interface software was able to take over some aspects of obstacle avoidance (another low-level task), and this led to further significant reductions in the time that participants took to perform the carrying task. Improvements in performance also occurred when participants used a tethered viewpoint to control their movements because they could see their immediate surroundings in the VEs. This latter finding demonstrates the superiority of a tethered view perspective to a conventional, human'seye perspective for this type of task.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2002) 11 (6): 591–609.
Published: 01 December 2002
Abstract
View article
PDF
A set of rules is presented for the design of interfaces that allow virtual objects to be manipulated in 3D virtual environments (VEs). The rules differ from other interaction techniques because they focus on the problems of manipulating objects in cluttered spaces rather than open spaces. Two experiments are described that were used to evaluate the effect of different interaction rules on participants' performance when they performed a task known as “the piano mover's problem.” This task involved participants in moving a virtual human through parts of a virtual building while simultaneously manipulating a large virtual object that was held in the virtual human's hands, resembling the simulation of manual materials handling in a VE for ergonomic design. Throughout, participants viewed the VE on a large monitor, using an “over-the-shoulder” perspective. In the most cluttered VEs, the time that participants took to complete the task varied by up to 76% with different combinations of rules, thus indicating the need for flexible forms of interaction in such environments.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2001) 10 (5): 511–524.
Published: 01 October 2001
Abstract
View article
PDF
Imagine walking around a cluttered room but then having little idea of where you have traveled. This frequently happens when people move around small virtual environments (VEs), searching for targets. In three experiments, participants searched small-scale VEs using different movement interfaces, collision response algorithms, and fields of view. Participants' searches were most efficient in terms of distance traveled, time taken, and path followed when the simplest form of movement (view direction) was used in conjunction with a response algorithm that guided (“slipped”) them around obstacles when collisions occurred. Unexpectedly, and in both immersive and desktop VEs, participants often had great difficulty finding the targets, despite the fact that participants could see the whole VE if they stood in one place and turned around. Thus, the trivial real-world task used in the present study highlights a basic problem with current VE systems.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1999) 8 (2): 157–168.
Published: 01 April 1999
Abstract
View article
PDF
Participants used a helmet-mounted display (HMD) and a desk-top (monitor) display to learn the layouts of two large-scale virtual environments (VEs) through repeated, direct navigational experience. Both VEs were “virtual buildings” containing more than seventy rooms. Participants using the HMD navigated the buildings significantly more quickly and developed a significantly more accurate sense of relative straight-line distance. There was no significant difference between the two types of display in terms of the distance that participants traveled or the mean accuracy of their direction estimates. Behavioral analyses showed that participants took advantage of the natural, head-tracked interface provided by the HMD in ways that included “looking around” more often while traveling through the VEs, and spending less time stationary in the VEs while choosing a direction in which to travel.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1998) 7 (2): 179–192.
Published: 01 April 1998
Abstract
View article
PDF
Two experiments investigated components of participants' spatial knowledge when they navigated large-scale “virtual buildings” using “desk-top” (i.e., nonimmersive) virtual environments (VEs). Experiment 1 showed that participants could estimate directions with reasonable accuracy when they traveled along paths that contained one or two turns (changes of direction), but participants' estimates were significantly less accurate when the paths contained three turns. In Experiment 2 participants repeatedly navigated two more complex virtual buildings, one with and the other without a compass. The accuracy of participants' route-finding and their direction and relative straight-line distance estimates improved with experience, but there were no significant differences between the two compass conditions. However, participants did develop significantly more accurate spatial knowledge as they became more familiar with navigating VEs in general.