Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
James P. Bliss
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1997) 6 (1): 73–86.
Published: 01 February 1997
Abstract
View article
PDF
Because fire rescue personnel often enter unfamiliar buildings to perform critical tasks like rescues, the importance of finding new and improved ways to train route navigation is becoming paramount. This research was designed to compare three methods for training firefighters to navigate a rescue route in an unfamiliar building. Thirty firefighters from the Madison County, Alabama, area were trained to navigate through the Administrative Science Building at The University of Alabama in Huntsville. The firefighters, who had not had any experience with the Administrative Science Building prior to the experiment, were randomly assigned to one of three experimental training groups: Blueprint, Virtual Reality, or No Training (Control). After training, we measured the total navigation time and number of wrong turns exhibited by firefighters in the actual building. Participants were required to rescue a mock baby (a life-sized doll) following the specific trained route. Measures of test performance were compared among groups by using analyses of variance (ANOVAs). The results indicated that firefighters trained with virtual reality or blueprints performed a quicker and more accurate rescue than those without training. Furthermore, the speed and accuracy of rescue performance did not differ significantly between virtual reality and blueprint training groups. These results indicate that virtual reality training, if constructed and implemented properly, may provide an effective alternative to current navigation training methods. The results are discussed with regard to theories of transfer of training and human performance in virtual environments.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1994) 3 (2): 145–157.
Published: 01 May 1994
Abstract
View article
PDF
The Virtual Environment Performance Assessment Battery (VEPAB) is a set of tasks developed to support research on training applications of virtual environment (VE) technology. VEPAB measures human performance on vision, locomotion, tracking, object manipulation, and reaction time tasks performed in three-dimensional, interactive VEs. It can be used to provide a general orientation for interacting in VEs and to determine both entry level performance and skill acquisition of users. In addition, VEPAB allows comparison of task performance, side effects and aftereffects, and subjective reactions across different VE systems. By providing benchmarks of human performance, VEPAB can promote continuity in training research involving different technologies, separate research facilities, and dissimilar subject populations. This paper describes the development of VEPAB and summarizes the results of two experiments, one to test the sensitivity of the tasks to differences between input control devices and the other to examine practice effects.