Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
M. Bajka
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2008) 17 (5): 441–462.
Published: 01 October 2008
Abstract
View article
PDF
Virtual reality based simulation is an appealing option to supplement traditional clinical education. However, the formal integration of training simulators into the medical curriculum is still lacking. Especially, the lack of a reasonable level of realism supposedly hinders the widespread use of this technology. Therefore, we try to tackle this situation with a reference surgical simulator of the highest possible fidelity for procedural training. This overview describes all elements that have been combined into our training system as well as first results of simulator validation. Our framework allows the rehearsal of several aspects of hysteroscopy—for instance, correct fluid management, handling of excessive bleeding, appropriate removal of intra-uterine tumors, or the use of the surgical instrument.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2000) 9 (3): 310–333.
Published: 01 June 2000
Abstract
View article
PDF
Virtual reality (VR)-based surgical simulator systems offer a very elegant approach to enriching and enhancing traditional training in endoscopic surgery. However, while a number of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from being able to provide a reasonably realistic surgical environment. We explore the current limits for realism and the approaches to reaching and surpassing those limits by describing and analyzing the most important components of VR-based endoscopic simulators. The feasibility of the proposed techniques is demonstrated on a modular prototype system that implements the basic algorithms for VR training in gynaecologic laparoscopy.