Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Marcia K O'Malley
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2009) 18 (6): 449–467.
Published: 01 December 2009
Abstract
View article
PDF
This paper introduces and validates quantitative performance measures for a rhythmic target-hitting task. These performance measures are derived from a detailed analysis of human performance during a month-long training experiment where participants learned to operate a 2-DOF haptic interface in a virtual environment to execute a manual control task. The motivation for the analysis presented in this paper is to determine measures of participant performance that capture the key skills of the task. This analysis of performance indicates that two quantitative measures—trajectory error and input frequency—capture the key skills of the target-hitting task, as the results show a strong correlation between the performance measures and the task objective of maximizing target hits. The performance trends were further explored by grouping the participants based on expertise and examining trends during training in terms of these measures. In future work, these measures will be used as inputs to a haptic guidance scheme that adjusts its control gains based on a real-time assessment of human performance of the task. Such guidance schemes will be incorporated into virtual training environments for humans to develop manual skills for domains such as surgery, physical therapy, and sports.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2005) 14 (3): 366–376.
Published: 01 June 2005
Abstract
View article
PDF
The ability of human subjects to identify and discriminate between different-sized real objects was compared with their ability to identify and discriminate between different-sized simulated objects generated by a haptic interface. This comparison was additionally performed for cases of limited force and limited stiffness output from the haptic device, which in effect decrease the fidelity of the haptic simulation. Results indicate that performance of size-identification tasks with haptic-interface hardware capable of a minimum of 3 N of maximum force output can approach performance in real environments, but falls short when virtual surface stiffness is limited. For size-discrimination tasks, performance in simulated environments was consistently lower than performance in a comparable real environment. Interestingly, significant variations in the fidelity of the haptic simulation do not appear to significantly alter the ability of a subject to identify or discriminate between the types of simulated objects described herein.