Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Narender P. Reddy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1997) 6 (3): 282–291.
Published: 01 June 1997
Abstract
View article
PDF
Position tracking and control using bioelectric signals are emerging as promising techniques. Surface electromyographic (EMG) signals are being researched for tracking human movements, direct proportional control of teleoperators, and object manipulation in VR environments. This study investigates the use of surface EMG to track elbow joint angle during flexion-extension of the arm applied to control of a virtual environment or an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The intelligent system has been tested on normal subjects performing flexion-extension of the arm of various angles and at several speeds. The joint angles predicted by the intelligent system were input to a computer-simulated model of an elbow manipulator. Preliminary results show the average root mean squared (RMS) error between the actual elbow joint angle measured with a goniometer and the joint angle reproduced by the robot model to be less than 20%. The technique of using EMG as an interface for tracking and direct biocontrol has great potential in VR and telemanipulation.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1997) 6 (2): 218–228.
Published: 01 April 1997
Abstract
View article
PDF
Minimally invasive surgery (MIS), even with its shortcomings, has had a far reaching impact in the field of surgery. During MIS procedures, as the surgeon's hands are remote from the site of the surgery, they do not have a feel of the tissue being manipulated and the forces that should be applied to manipulate the tissue. Studies are being conducted to provide tactile and force feedback of the tissues being manipulated to the surgeon. However, the surgeons are trained in conventional surgery and are familiar with the forces that they apply on the conventional surgical tools. Therefore, before such studies are conducted, there is a need for quantitative comparison of conventional and laparoscopic tools. The purpose of the present investigation was to determine if the forces applied on the conventional surgical forceps are the same as those applied on the laparoscopic forceps during the same procedures. The results of the study showed that the handle and tip forces in laparoscopic forceps were significantly different from that of the conventional surgical forceps ( p ≤0.005). The results also showed that the mean power of the surface EMG measured from flexor pollicis brevis (flexor of the thumb) and the extensor pollicis brevis (extensor of the proximal thumb) while manipulating laparoscopic forceps were significantly different from that measured while manipulating conventional surgical forceps for the same procedure ( p ≤ 0.005).