Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Rebecca Lee Garnett
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2000) 9 (6): 593–615.
Published: 01 December 2000
Abstract
View article
PDF
There is currently much research activity involving virtual environments (VEs) and spatial behavior (spatial perception, cognition, and performance). After some initial remarks describing and categorizing the different types of research being conducted on VEs and spatial behavior, discussion in this Forum paper focuses on one specific type, namely, research concerned with the use of VE technology for training spatial behavior in the real world. We initially present an overview of issues and problems relevant to conducting research in this area, and then, in the latter portion of the paper, present an overview of the research that we believe needs to be done in this area. We have written this paper for the forum section of Presence because, despite its length, it is essentially an opinion piece. Our aim here is not to report the results of research in our own laboratory nor to review the literature, as other available papers already serve these goals. Rather, the primary purpose of this paper is to stimulate open discussion about needed future research. In general, we believe that such a discussion can serve the research establishment as much as reports of completed work.
Journal Articles
Glenn Koh, Thomas E. von Wiegand, Rebecca Lee Garnett, Nathaniel I. Durlach, Barbara Shinn-Cunningham
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1999) 8 (6): 632–656.
Published: 01 December 1999
Abstract
View article
PDF
A relatively simple architectural space was modeled and used to compare the effects of spatial training in simulations versus training in the real world. Thirty-five subjects were trained in one of the following conditions: real world (RW), virtual environment (VE), nonimmersive virtual environment (NVE), and model (Mod). The VE condition made use of a head-mounted display to view the simulated environment, while the NVE condition used a desktop monitor. In the Mod condition, the subject viewed and could manipulate a 3-D model of the space, viewed from a desktop display. The training-transfer tasks, performed after brief unstructured exposure to the actual space or to one of the simulations, consisted of estimating the bearing and range to various targets in the real space from various spatially distributed stations, each such pair of estimates constituting a subtask of the overall transfer task. Results obtained from each of the four training conditions proved to be roughly the same. Training in any one of the simulations was comparable to training in the real world. Independent of training condition, there was a strong tendency among subjects to underestimate range. Variability in range errors was dominated by differences among subjects, whereas variability in bearing errors was dominated by differences among subtasks. These results are discussed in the context of plans for future work.