Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Ryad Chellali
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2017) 26 (1): 42–65.
Published: 01 February 2017
Abstract
View articletitled, Use of Random Dot Patterns in Achieving X-Ray Vision for Near-Field Applications of Stereoscopic Video-Based Augmented Reality Displays
View
PDF
for article titled, Use of Random Dot Patterns in Achieving X-Ray Vision for Near-Field Applications of Stereoscopic Video-Based Augmented Reality Displays
This article addresses some of the challenges involved with creating a stereoscopic video augmented reality “X-ray vision” display for near-field applications, which enables presentation of computer-generated objects as if they lie behind a real object surface, while maintaining the ability to effectively perceive information that might be present on that surface. To achieve this, we propose a method in which patterns consisting of randomly distributed dots are overlaid onto the real surface prior to the rendering of a virtual object behind the real surface using stereoscopic disparity. It was hypothesized that, even though the virtual object is occluding the real object’s surface, the addition of the random dot patterns should increase the strength of the binocular disparity cue, resulting in improved performance in localizing the virtual object behind the surface. In Phase I of the experiment reported here, the feasibility of the display principle was confirmed, and concurrently the effects of relative dot size and dot density on the presence and sensitivity of any perceptual bias in localizing the virtual object within the vicinity of a flat, real surface with a periodic texture were assessed. In Phase II, the effect of relative dot size and dot density on perceiving the impression of transparency of the same real surface while preserving detection of surface information was investigated. Results revealed an advantage of the proposed method in comparison with the “No Pattern” condition for the transparency ratings. Surface information preservation was also shown to decrease with increasing dot density and relative dot size.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2011) 20 (3): 254–272.
Published: 01 June 2011
Abstract
View articletitled, Depth Perception Within Peripersonal Space Using Head-Mounted Display
View
PDF
for article titled, Depth Perception Within Peripersonal Space Using Head-Mounted Display
In this paper, we address depth perception in the peripersonal space within three virtual environments: poor environment (dark room), reduced cues environment (wireframe room), and rich cues environment (a lit textured room). Observers binocularly viewed virtual scenes through a head-mounted display and evaluated the egocentric distance to spheres using visually open-loop pointing tasks. We conducted two different experiments within all three virtual environments. The apparent size of the sphere was held constant in the first experiment and covaried with distance in the second one. The results of the first experiment revealed that observers more accurately estimated depth in the rich virtual environment compared to the visually poor and the wireframe environments. Specifically, observers' pointing errors were small in distances up to 55 cm, and increased with distance once the sphere was further than 55 cm. Individual differences were found in the second experiment. Our results suggest that the quality of virtual environments has an impact on distance estimation within reaching space. Also, manipulating the targets' size cue led to individual differences in depth judgments. Finally, our findings confirm the use of vergence as an absolute distance cue in virtual environments within the arm's reaching space.