Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Shigeaki Aoki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2008) 17 (4): 392–404.
Published: 01 August 2008
Abstract
View article
PDF
TeleHead I is an acoustical telepresence robot that we built on the basis of the concept that remote sound localization could be best achieved by using a user-like dummy head whose movement synchronizes with the user's head movement in real time. We clarified the characteristics of the latest version of TeleHead I, TeleHead II, and verified the validity of this concept by sound localization experiments. TeleHead II can synchronize stably with the user's head movement with a 120-ms delay. The driving noise level measured through headphones is below 24 dB SPL from 1 to 4 kHz. The shape difference between the dummy head and the user is about 3% in head width and 5% in head length. An overall measurement metric indicated that the difference between the head-related transfer functions (HRTFs) of the dummy head and the modeled listener is about 5 dB. The results of the sound localization experiments using TeleHead II clarified that head movement improves horizontal-plane sound localization performance even when the dummy head shape differs from the user's head shape. In contrast, the results for head movement when the dummy head shape and user head shape are different were inconsistent in the median plane. The accuracy of sound localization when using the same-shape dummy head with movement tethered to the user's head movement was always good. These results show that the TeleHead concept is acceptable for building an acoustical telepresence robot. They also show that the physical characteristics of TeleHead II are sufficient for conducting sound localization experiments.
Journal Articles
Publisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (1994) 3 (1): 60–72.
Published: 01 February 1994
Abstract
View article
PDF
A technique is presented for dynamically invoking a set of head-related transfer functions (HRTFs) and scaling gain, driven by a dynamic map in a graphic window. With such an interface, users may configure a virtual conferencing environment, manipulating virtual positions of teleconferees. The design of a personal headphone teleconferencing prototype is proposed, integrating spatialized sound presentation with individualized HRTF measurement using a bifunctional transducer. According to judgment tests, the use of individualized HRTFs instead of dummy-head HRTFs can reduce front-back sound image confusion.