Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Yili Fu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
FPAA-Based Control of Bilateral Teleoperation Systems for Enhanced User Task Performance
UnavailablePublisher: Journals Gateway
Presence: Teleoperators and Virtual Environments (2017) 26 (2): 210–227.
Published: 01 May 2017
Abstract
View articletitled, FPAA-Based Control of Bilateral Teleoperation Systems for Enhanced User Task Performance
View
PDF
for article titled, FPAA-Based Control of Bilateral Teleoperation Systems for Enhanced User Task Performance
In a bilateral teleoperation system, discrete-time implementation of the controller can cause performance degradation. This is due to a well-known stability-imposed upper bound on the product of the discrete-time controller's gain and the sampling period. In this article, for a bilateral teleoperation system, a continuous-time controller based on a Field Programmable Analog Array (FPAA) is deployed and compared in terms of performance with its discrete-time counterpart. Experimental results show that, unlike the discrete-time controller, the FPAA-based controller helps the human user complete teleoperation tasks that require high controller gains such as when a large impedance needs to be displayed against the user's hand. Also, an experimental object stiffness discrimination study shows that large sampling periods, necessitating low control gains for maintaining stability, lead to unacceptable task performance by the user; however, the users show an improved ability to discriminate the various objects if the teleoperation controller is implemented using an FPAA.