Scholarly publications represent at least two benefits for the study of the scientific community as a social group. First, they attest to some form of relation between scientists (collaborations, mentoring, heritage, …), useful to determine and analyze social subgroups. Second, most of them are recorded in large databases, easily accessible and including a lot of pertinent information, easing the quantitative and qualitative study of the scientific community. Understanding the underlying dynamics driving the creation of knowledge in general, and of scientific publication in particular, can contribute to maintaining a high level of research, by identifying good and bad practices in science. In this article, we aim to advance this understanding by a statistical analysis of publication within peer-reviewed journals. Namely, we show that the distribution of the number of papers published by an author in a given journal is heavy-tailed, but has a lighter tail than a power law. Interestingly, we demonstrate (both analytically and numerically) that such distributions match the result of a modified preferential attachment process, where, on top of a Barabási-Albert process, we take the finite career span of scientists into account.

This content is only available as a PDF.

Author notes

Handling Editor: Ludo Waltman

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.