Wikipedia is one of the most visited websites in the world and is also a frequent subject of scientific research. However, the analytical possibilities of Wikipedia information have not yet been analyzed considering at the same time both a large volume of pages and attributes. The main objective of this work is to offer a methodological framework and an open knowledge graph for the informetric large-scale study of Wikipedia. Features of Wikipedia pages are compared with those of scientific publications to highlight the (di)similarities between the two types of documents. Based on this comparison, different analytical possibilities that Wikipedia and its various data sources offer are explored, ultimately offering a set of metrics meant to study Wikipedia from different analytical dimensions. In parallel, a complete dedicated dataset of the English Wikipedia was built (and shared) following a relational model. Finally, a descriptive case study is carried out on the English Wikipedia dataset to illustrate the analytical potential of the knowledge graph and its metrics.

Peer Review

https://publons.com/publon/10.1162/qss_a_00226

This content is only available as a PDF.

Author notes

Handling Editor: Vincent Larivière

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Article PDF first page preview

Article PDF first page preview

Supplementary data