Through discovery of meso-scale structures, community detection methods contribute to the understanding of complex networks. Many community finding methods, however, rely on disjoint clustering techniques, in which node membership is restricted to one community or cluster. This strict requirement limits the ability to inclusively describe communities since some nodes may reasonably be assigned to many communities. We have previously reported Iterative K-core Clustering (IKC), a scalable and modular pipeline that discovers disjoint research communities from the scientific literature. We now present Assembling Overlapping Clusters (AOC), a complementary meta-method for overlapping communities as an option that addresses the disjoint clustering problem. We present findings from the use of AOC on a network of over 13 million nodes that captures recent research in the very rapidly growing field of extracellular vesicles in biology.

Peer Review

https://publons.com/publon/10.1162/qss_a_00227

This content is only available as a PDF.

Author notes

A. J. and B. L. contributed equally to this study.

Handling Editor: Ludo Waltman

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Article PDF first page preview

Article PDF first page preview