Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Michael Färber
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Quantitative Science Studies (2022) 3 (1): 51–98.
Published: 12 April 2022
FIGURES
| View All (14)
Abstract
View article
PDF
Although several large knowledge graphs have been proposed in the scholarly field, such graphs are limited with respect to several data quality dimensions such as accuracy and coverage. In this article, we present methods for enhancing the Microsoft Academic Knowledge Graph (MAKG), a recently published large-scale knowledge graph containing metadata about scientific publications and associated authors, venues, and affiliations. Based on a qualitative analysis of the MAKG, we address three aspects. First, we adopt and evaluate unsupervised approaches for large-scale author name disambiguation. Second, we develop and evaluate methods for tagging publications by their discipline and by keywords, facilitating enhanced search and recommendation of publications and associated entities. Third, we compute and evaluate embeddings for all 239 million publications, 243 million authors, 49,000 journals, and 16,000 conference entities in the MAKG based on several state-of-the-art embedding techniques. Finally, we provide statistics for the updated MAKG. Our final MAKG is publicly available at https://makg.org and can be used for the search or recommendation of scholarly entities, as well as enhanced scientific impact quantification.
Journal Articles
Publisher: Journals Gateway
Quantitative Science Studies (2022) 2 (4): 1324–1355.
Published: 01 December 2021
FIGURES
| View All (9)
Abstract
View article
PDF
Several scholarly knowledge graphs have been proposed to model and analyze the academic landscape. However, although the number of data sets has increased remarkably in recent years, these knowledge graphs do not primarily focus on data sets but rather on associated entities such as publications. Moreover, publicly available data set knowledge graphs do not systematically contain links to the publications in which the data sets are mentioned. In this paper, we present an approach for constructing an RDF knowledge graph that fulfills these mentioned criteria. Our data set knowledge graph , DSKG, is publicly available at http://dskg.org and contains metadata of data sets for all scientific disciplines. To ensure high data quality of the DSKG, we first identify suitable raw data set collections for creating the DSKG. We then establish links between the data sets and publications modeled in the Microsoft Academic Knowledge Graph that mention these data sets. As the author names of data sets can be ambiguous, we develop and evaluate a method for author name disambiguation and enrich the knowledge graph with links to ORCID. Overall, our knowledge graph contains more than 2,000 data sets with associated properties, as well as 814,000 links to 635,000 scientific publications. It can be used for a variety of scenarios, facilitating advanced data set search systems and new ways of measuring and awarding the provisioning of data sets.