Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Peter Sjögårde
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Quantitative Science Studies (2022) 3 (4): 1097–1118.
Published: 20 December 2022
FIGURES
| View All (9)
Abstract
View article
PDF
Overlay maps of science are global base maps over which subsets of publications can be projected. Such maps can be used to monitor, explore, and study research through its publication output. Most maps of science, including overlay maps, are flat in the sense that they visualize research fields at one single level. Such maps generally fail to provide both overview and detail about the research being analyzed. The aim of this study is to improve overlay maps of science to provide both features in a single visualization. I created a map based on a hierarchical classification of publications, including broad disciplines for overview and more granular levels to incorporate detailed information. The classification was obtained by clustering articles in a citation network of about 17 million publication records in PubMed from 1995 onwards. The map emphasizes the hierarchical structure of the classification by visualizing both disciplines and the underlying specialties. To show how the visualization methodology can help getting both an overview of research and detailed information about its topical structure, I studied two cases: coronavirus/Covid-19 research and the university alliance called Stockholm Trio .
Journal Articles
Publisher: Journals Gateway
Quantitative Science Studies (2020) 1 (1): 207–238.
Published: 01 February 2020
FIGURES
| View All (10)
Abstract
View article
PDF
In this work, we build on and use the outcome of an earlier study on topic identification in an algorithmically constructed publication-level classification (ACPLC), and address the issue of how to algorithmically obtain a classification of topics (containing articles), where the classes of the classification correspond to specialties. The methodology we propose, which is similar to that used in the earlier study, uses journals and their articles to construct a baseline classification. The underlying assumption of our approach is that journals of a particular size and focus have a scope that corresponds to specialties. By measuring the similarity between (1) the baseline classification and (2) multiple classifications obtained by topic clustering and using different values of a resolution parameter, we have identified a best performing ACPLC. In two case studies, we could identify the subject foci of the specialties involved, and the subject foci of specialties were relatively easy to distinguish. Further, the class size variation regarding the best performing ACPLC is moderate, and only a small proportion of the articles belong to very small classes. For these reasons, we conclude that the proposed methodology is suitable for determining the specialty granularity level of an ACPLC.