Here’s why. (a) The Hodrick-Prescott (HP) filter introduces spurious dynamic relations that have no basis in the underlying data-generating process. (b) Filtered values at the end of the sample are very different from those in the middle and are also characterized by spurious dynamics. (c) A statistical formalization of the problem typically produces values for the smoothing parameter vastly at odds with common practice. (d) There is a better alternative. A regression of the variable at date t on the four most recent values as of date t - h achieves all the objectives sought by users of the HP filter with none of its drawbacks.

You do not currently have access to this content.