Abstract
We derive an inference method that works in differences-in-differences settings with few treated and many control groups in the presence of heteroskedasticity. As a leading example, we provide theoretical justification and empirical evidence that heteroskedasticity generated by variation in group sizes can invalidate existing inference methods, even in data sets with a large number of observations per group. In contrast, our inference method remains valid in this case. Our test can also be combined with feasible generalized least squares, providing a safeguard against misspecification of the serial correlation.
© 2019 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
2019
The President and Fellows of Harvard College and the Massachusetts Institute of Technology
You do not currently have access to this content.