Abstract
Survey nonresponse has risen in recent years, which has increased the share of imputed and underreported values found on commonly used data sets. While this trend has been well documented for earnings, the growth in nonresponse to government transfers questions has received far less attention. We demonstrate analytically that the underreporting and imputation of transfer benefits can lead to program impact estimates that are substantially overstated when using instrumental variables methods to correct for endogeneity or measurement error in benefit amounts. We document the importance of failing to account for these issues using two empirical examples.
© 2019 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
2019
The President and Fellows of Harvard College and the Massachusetts Institute of Technology
You do not currently have access to this content.