Abstract
In the existing literature, conditional forecasts in the vector autoregressive (VAR) framework have not been commonly presented with probability distributions. This paper develops Bayesian methods for computing the exact finite-sample distribution of conditional forecasts. It broadens the class of conditional forecasts to which the methods can be applied. The methods work for both structural and reduced-form VAR models and, in contrast to common practices, account for parameter uncertainty in finite samples. Empirical examples under both a flat prior and a reference prior are provided to show the use of these methods.
This content is only available as a PDF.
© 1999 President and Fellows of Harvard College and the Massachusetts Institute of Technology
1999
You do not currently have access to this content.