Abstract
This paper proposes a nonparametric test for parametric conditional distributions of dynamic models. The test is of the Kolmogorov type coupled with Khmaladze's martingale transformation. It is asymptotically distribution-free and has nontrivial power against root-n local alternatives. The method is applicable for various dynamic models, including autoregressive and moving average models, generalized autoregressive conditional heteroskedasticity (GARCH), integrated GARCH, and general nonlinear time series regressions. The method is also applicable for cross-sectional models. Finally, we apply the procedure to testing conditional normality and the conditional t-distribution in a GARCH model for the NYSE equal-weighted returns.
This content is only available as a PDF.
© 2003 President and Fellows of Harvard College and the Massachusetts Institute of Technology
2003
You do not currently have access to this content.